Approximation algorithms for discrete stochastic and deterministic optimization problems
离散随机和确定性优化问题的近似算法
基本信息
- 批准号:0635121
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-10-01 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for NSF Grant 0635121 - Approximation algorithms for discrete stochastic and deterministic optimization problemsDavid B. ShmoysIntellectual Merit - For most applications in which optimization algorithms are employed in industry, the input data is actually not known. This might be because the data is based on measurements, which are estimates due to noise, or because only a forecast of future data is available. Stochastic optimization models incorporate this uncertainty as part of the input, and are harder to solve than their deterministic counterparts. This research investigates algorithms that compute provably near-optimal solutions for stochastic optimization problems; in contrast, traditional approaches mostly show convergence results without guarantees to efficiently produce near-optimal solutions. Broader Impact - Finding good approaches to gain new efficiencies in logistical planning is important for the overall US economy. This research develops new algorithmic techniques to do this. By studying simplified models, this research devises algorithmic paradigms that can then be applied in more concrete applications, thereby providing industry with better solutions. Furthermore, it is important that the US workforce has sufficient expertise to meet the technological challenges of the coming century, and by integrating this research with the training of both graduate and undergraduate students, this work helps to meet this need in maintaining the economic competitiveness of the US.This research addresses a number of specific discrete stochastic optimization problems, focusing primarily on problems from logistics: routing, scheduling, inventory management and network design. This research focuses on a "black box" that specifies the probabilistic input by means of polynomial independent samples from the underlying distribution; this is important when one has access to historical data. This work studies the stochastic TSP, max cut, and single-machine scheduling problems; 2-stage with recourse models of the survivable network design and maximum job selection problems, and multistage stochastic models from inventory control, options pricing, and AdWords bidding. This research also studies the deterministic asymmetric TSP, bin-packing, and capacitated facility-location problems.
摘要为美国国家科学基金会资助0635121 -近似算法离散随机和确定性优化问题大卫B。ShmoysIntellectual Merit -对于大多数工业中采用优化算法的应用程序,输入数据实际上是未知的。这可能是因为数据是基于测量的,而测量是由于噪声而引起的估计,或者因为只有对未来数据的预测可用。随机优化模型将这种不确定性作为输入的一部分,并且比确定性模型更难求解。本研究调查算法,计算可证明的随机优化问题的接近最优的解决方案,相比之下,传统的方法大多显示收敛的结果,没有保证有效地产生接近最优的解决方案。 更广泛的影响-找到好的方法来获得新的效率,在物流规划是重要的整体美国经济。 这项研究开发了新的算法技术来做到这一点。通过研究简化的模型,本研究设计了算法范例,然后可以应用于更具体的应用程序,从而为行业提供更好的解决方案。 此外,重要的是,美国劳动力有足够的专业知识,以满足未来世纪的技术挑战,并通过将本研究与研究生和本科生的培训,这项工作有助于满足这一需要,在保持美国的经济竞争力。这项研究解决了一些具体的离散随机优化问题,主要集中在物流问题:路由,调度,库存管理和网络设计。这项研究的重点是一个“黑盒子”,指定的概率输入多项式独立的样本从底层分布的方式,这是很重要的,当一个访问历史数据。 本文研究了随机TSP问题、最大割问题和单机调度问题; 2-阶段可生存网络设计和最大作业选择问题的资源模型;以及库存控制、期权定价和AdWords投标的多阶段随机模型。 本研究亦研究了确定性非对称TSP、装箱问题及容量限制设施选址问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Shmoys其他文献
David Shmoys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Shmoys', 18)}}的其他基金
Stochastic Optimization Models and Methods for the Sharing Economy
共享经济的随机优化模型和方法
- 批准号:
1537394 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
AF: Small: Approximation Algorithms for Problems in Logistics
AF:小:物流问题的近似算法
- 批准号:
1526067 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
IEEE Symposium on Foundations of Computer Science (FOCS) 2013, Berkeley, CA Oct 27-29, 2013
IEEE 计算机科学基础研讨会 (FOCS) 2013,加利福尼亚州伯克利,2013 年 10 月 27-29 日
- 批准号:
1348020 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
AF: Small: AAdvances in the Design of Approximation Algorithms for Optimization Problems
AF:小:优化问题近似算法设计的进展
- 批准号:
1017688 - 财政年份:2010
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Approximation Algorithms for Scheduling, Packing, and Related Logistics Problems
调度、包装和相关物流问题的近似算法
- 批准号:
0430682 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Continuing grant
The Design, Analysis and Application of Approximation Algorithms
逼近算法的设计、分析与应用
- 批准号:
9912422 - 财政年份:2000
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
U.S.-Canada Joint Workshop on Approximation Algorithms for NP-Hard Problems, Toronto, Canada, Sept. 26 - Oct. 1, 1999
美国-加拿大 NP 难问题近似算法联合研讨会,加拿大多伦多,1999 年 9 月 26 日至 10 月 1 日
- 批准号:
9904068 - 财政年份:1999
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Approximation Algorithms via Linear Programming
通过线性规划的近似算法
- 批准号:
9700029 - 财政年份:1997
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Near-Optimal Solutions for Combinatorial Problems: Algorithms and Complexity
组合问题的近乎最优解:算法和复杂性
- 批准号:
9307391 - 财政年份:1994
- 资助金额:
$ 32万 - 项目类别:
Continuing grant
PYI: The Design and Analysis of Efficient Algorithms
PYI:高效算法的设计与分析
- 批准号:
8996272 - 财政年份:1989
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Exact and approximation algorithms for some discrete optimization problems
一些离散优化问题的精确和近似算法
- 批准号:
170381-2005 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Development of Efficient and Accurate Approximation Algorithms for Constrained Optimization of Discrete Convex Functions
离散凸函数约束优化的高效准确逼近算法的开发
- 批准号:
21740060 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Exact and approximation algorithms for some discrete optimization problems
一些离散优化问题的精确和近似算法
- 批准号:
170381-2005 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Exact and approximation algorithms for some discrete optimization problems
一些离散优化问题的精确和近似算法
- 批准号:
170381-2005 - 财政年份:2007
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Discrete and computational geometry, approximation algorithms
离散和计算几何、近似算法
- 批准号:
312390-2005 - 财政年份:2007
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Discrete and computational geometry, approximation algorithms
离散和计算几何、近似算法
- 批准号:
312390-2005 - 财政年份:2006
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Exact and approximation algorithms for some discrete optimization problems
一些离散优化问题的精确和近似算法
- 批准号:
170381-2005 - 财政年份:2006
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Discrete and computational geometry, approximation algorithms
离散和计算几何、近似算法
- 批准号:
312390-2005 - 财政年份:2005
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Exact and approximation algorithms for some discrete optimization problems
一些离散优化问题的精确和近似算法
- 批准号:
170381-2005 - 财政年份:2005
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
RIA: Approximation Algorithms for Hard Problems in Discrete Optimization
RIA:离散优化中难题的近似算法
- 批准号:
9409625 - 财政年份:1994
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant