Stochastic Optimization Models and Methods for the Sharing Economy
共享经济的随机优化模型和方法
基本信息
- 批准号:1537394
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The US economy is undergoing a dramatic change with the introduction of a wave of industries based on the sharing of resources. Prominent examples include vehicle-sharing services like ZipCar and Motivate, "taxi-like" services like Uber and Lyft, and Airbnb. Such services rely not just on real-time information flow between dispersed users, but also on ensuring high reliability levels to ensure that users remain loyal to the service. For example, in vehicle sharing it is important that subscribers are able to obtain vehicles when and where they want them with high reliability. This proposal explores stochastic optimization models and methodology for logistical questions associated with the sharing economy, with particular emphasis on vehicle sharing. Central questions relate to fleet sizing and fleet deployment across a city. These questions are complicated by the heavily time-dependent and stochastic nature of vehicle usage.A suite of models and methods for tackling these problems is proposed that includes both long-term planning methodology for capacity sizing and short-term planning methodology for near real-time alignment of supply and demand of vehicles. The long-term planning methods are based on constructing stochastic models that simultaneously accurately model vehicle-sharing operations and provably possess mathematical structure that can be exploited through efficient optimization techniques, particularly integer linear programming. These properties will be established through combinatorial arguments to establish a set of sufficient conditions that allow one to apply linear programming on problems that are defined on integer lattices (since the number of vehicles at a location, and the capacity of locations are integral). These sufficient conditions will then be established for the stochastic models in question through the use of stochastic coupling techniques. This combination of combinatorial and coupling arguments may be broadly applicable beyond problems arising in the sharing economy, as evidenced by a plethora of similarly structured problems in a repository of simulation-optimization test problems. In addition to these long-term planning tools, short-term tools will be developed that enable a near real-time response to conditions on the ground. In vehicle-sharing systems, such tools would guide the repositioning of vehicles to better align with current and anticipated demand, using the results from long-term planning tools as a guide. A unifying principle in the proposed work is to develop methods that optimize expected performance under usual operating conditions to ensure efficient operation, while hedging against worst-case events to provide an important level of robustness to unexpected developments. The goal of this is work is provide practical solutions supported by new theoretical results that establish both strong average-case and worst-case guarantees.
美国经济正在经历一场巨大的变革,引入了一波基于资源共享的产业。突出的例子包括ZipCar和Motivate等车辆共享服务,Uber和Lyft等“出租车类”服务以及Airbnb。这种服务不仅依赖于分散的用户之间的实时信息流,而且还依赖于确保高可靠性水平,以确保用户对服务保持忠诚。例如,在车辆共享中,重要的是订户能够以高可靠性在他们想要的时间和地点获得车辆。该提案探讨了与共享经济相关的物流问题的随机优化模型和方法,特别强调了车辆共享。中心问题涉及车队规模和整个城市的车队部署。提出了一套解决这些问题的模型和方法,包括长期容量规划方法和短期近实时车辆供需协调规划方法。长期规划方法基于构建随机模型,该随机模型同时精确地模拟车辆共享操作,并且可证明具有可通过有效的优化技术(特别是整数线性规划)利用的数学结构。这些属性将通过组合参数建立,以建立一组充分条件,允许将线性规划应用于整数格上定义的问题(因为位置处的车辆数量和位置的容量是整数)。这些充分条件,然后将建立问题中的随机模型,通过使用随机耦合技术。这种组合和耦合参数的组合可以广泛适用于共享经济中出现的问题之外,正如模拟优化测试问题库中大量类似结构的问题所证明的那样。除了这些长期规划工具外,还将开发短期工具,以便能够对实地情况作出近乎实时的反应。在车辆共享系统中,这些工具将指导车辆的重新定位,以更好地满足当前和预期的需求,并以长期规划工具的结果为指导。拟议工作的一个统一原则是开发方法,在通常操作条件下优化预期性能,以确保高效操作,同时对冲最坏情况的事件,为意外发展提供重要水平的鲁棒性。这项工作的目标是提供由新的理论结果支持的实际解决方案,这些理论结果建立了强有力的平均情况和最坏情况保证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Shmoys其他文献
David Shmoys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Shmoys', 18)}}的其他基金
AF: Small: Approximation Algorithms for Problems in Logistics
AF:小:物流问题的近似算法
- 批准号:
1526067 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IEEE Symposium on Foundations of Computer Science (FOCS) 2013, Berkeley, CA Oct 27-29, 2013
IEEE 计算机科学基础研讨会 (FOCS) 2013,加利福尼亚州伯克利,2013 年 10 月 27-29 日
- 批准号:
1348020 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AF: Small: AAdvances in the Design of Approximation Algorithms for Optimization Problems
AF:小:优化问题近似算法设计的进展
- 批准号:
1017688 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Approximation algorithms for discrete stochastic and deterministic optimization problems
离散随机和确定性优化问题的近似算法
- 批准号:
0635121 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Approximation Algorithms for Scheduling, Packing, and Related Logistics Problems
调度、包装和相关物流问题的近似算法
- 批准号:
0430682 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Continuing grant
The Design, Analysis and Application of Approximation Algorithms
逼近算法的设计、分析与应用
- 批准号:
9912422 - 财政年份:2000
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
U.S.-Canada Joint Workshop on Approximation Algorithms for NP-Hard Problems, Toronto, Canada, Sept. 26 - Oct. 1, 1999
美国-加拿大 NP 难问题近似算法联合研讨会,加拿大多伦多,1999 年 9 月 26 日至 10 月 1 日
- 批准号:
9904068 - 财政年份:1999
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Approximation Algorithms via Linear Programming
通过线性规划的近似算法
- 批准号:
9700029 - 财政年份:1997
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Near-Optimal Solutions for Combinatorial Problems: Algorithms and Complexity
组合问题的近乎最优解:算法和复杂性
- 批准号:
9307391 - 财政年份:1994
- 资助金额:
$ 20万 - 项目类别:
Continuing grant
PYI: The Design and Analysis of Efficient Algorithms
PYI:高效算法的设计与分析
- 批准号:
8996272 - 财政年份:1989
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Stochastic Optimization Models for Capacity Planning and Allocation in Freight Transportation Services
货运服务运力规划和分配的随机优化模型
- 批准号:
533221-2018 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Engage Grants Program
Transitory Stochastic Models: Analysis and Optimization
瞬态随机模型:分析与优化
- 批准号:
1636069 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: A Framework for Evaluation, Approximation, and Optimization of Time-Dependent Stochastic Service System Models having Deterministic/Scheduled Interventions
协作研究:具有确定性/预定干预的时间相关随机服务系统模型的评估、近似和优化框架
- 批准号:
1538050 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Developing New Global Stochastic Optimization and High-order Stochastic Models for Optimizing Mining Complexes under Uncertainty
开发新的全局随机优化和高阶随机模型以优化不确定性下的采矿综合体
- 批准号:
411270-2010 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research and Development Grants
Collaborative Research: A Framework for Evaluation, Approximation, and Optimization of Time-Dependent Stochastic Service System Models having Deterministic/Scheduled Interventions
协作研究:具有确定性/预定干预的时间相关随机服务系统模型的评估、近似和优化框架
- 批准号:
1538055 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Stochastic Optimization Models for Smart Grid Applications.
智能电网应用的随机优化模型。
- 批准号:
441711-2014 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Postgraduate Scholarships - Doctoral
Stochastic Optimization Models for Smart Grid Applications.
智能电网应用的随机优化模型。
- 批准号:
441711-2014 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Postgraduate Scholarships - Doctoral
Developing New Global Stochastic Optimization and High-order Stochastic Models for Optimizing Mining Complexes under Uncertainty
开发新的全局随机优化和高阶随机模型以优化不确定性下的采矿综合体
- 批准号:
411270-2010 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research and Development Grants
Developing New Global Stochastic Optimization and High-order Stochastic Models for Optimizing Mining Complexes under Uncertainty
开发新的全局随机优化和高阶随机模型以优化不确定性下的采矿综合体
- 批准号:
411270-2010 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research and Development Grants
Developing New Global Stochastic Optimization and High-order Stochastic Models for Optimizing Mining Complexes under Uncertainty
开发新的全局随机优化和高阶随机模型以优化不确定性下的采矿综合体
- 批准号:
411270-2010 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research and Development Grants