Helical Symmetric Flows with Swirl
带有旋流的螺旋对称流
基本信息
- 批准号:9310181
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-03-01 至 1997-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9310181 Rusak Theoretical research is to be carried out of the vortex breakdown phenomenon with an approach utilizing helical symmetry. With the governing equations based on a helical coordinate system, various asymptotic and numerical solutions will be obtained bearing on: standing helical waves, developing stagnation regions, failure of boundary layer approximations, and conical flows with helical symmetry. New criteria for the onset of breakdown in swirling flows are to be developed from such solutions. Vortex breakdown occurs on aircraft and in internal flows with swirl, such as for example combustion systems in boilers. Its mechanisms are as yet only incompletely understood. ***
小行星9310181 利用螺旋对称性对涡破裂现象进行了理论研究。基于螺旋坐标系的控制方程,将得到各种渐近解和数值解,它们与螺旋驻波、发展中的停滞区、边界层近似的失效和螺旋对称的锥形流有关。 新的标准开始崩溃的旋流将开发从这样的解决方案。涡流破裂发生在飞行器上和具有涡流的内部流中,例如锅炉中的燃烧系统。其机制尚未完全 明白 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zvi Rusak其他文献
Simulations of axisymmetric, inviscid swirling flows in circular pipes with various geometries
- DOI:
10.1007/s10665-019-10019-5 - 发表时间:
2019-10-05 - 期刊:
- 影响因子:1.400
- 作者:
Yuxin Zhang;Zvi Rusak;Shixiao Wang - 通讯作者:
Shixiao Wang
Theoretical and Numerical Studies of Transonic Flow of Moist Air Around a Thin Airfoil
- DOI:
10.1007/s00162-002-0061-1 - 发表时间:
2002-07-01 - 期刊:
- 影响因子:2.800
- 作者:
Jang-Chang Lee;Zvi Rusak - 通讯作者:
Zvi Rusak
Numerical-Asymptotic Expansion Matching for Computing a Viscous Flow Around a Sharp Expansion Corner
- DOI:
10.1007/s001620200055 - 发表时间:
2002-05-01 - 期刊:
- 影响因子:2.800
- 作者:
Takumi Hawa;Zvi Rusak - 通讯作者:
Zvi Rusak
Zvi Rusak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zvi Rusak', 18)}}的其他基金
Collaborative Research: Physically-Based Models and System Analysis Tools for Feedback Fluid Flow Control
合作研究:用于反馈流体流量控制的基于物理的模型和系统分析工具
- 批准号:
0523957 - 财政年份:2005
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
The Dynamics of Combustion Systems With Swirl and Vortex Breakdown
具有旋流和涡流破坏的燃烧系统动力学
- 批准号:
9904327 - 财政年份:1999
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Three-Dimensional Instabilities and Transition to Vortex Breakdown in Swirling Flows
旋流中的三维不稳定性和涡流破坏的过渡
- 批准号:
9804745 - 财政年份:1998
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
相似海外基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
- 批准号:
24K06666 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Distributed Symmetric Key Exchange (DSKE) Network
分布式对称密钥交换 (DSKE) 网络
- 批准号:
10077122 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Collaborative R&D
Analysis of local optical resonance effects due to the structural symmetric breakdown
结构对称击穿引起的局部光学共振效应分析
- 批准号:
23H01847 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Theoretical and Numerical Investigation of Symmetric Mass Generation
职业:对称质量生成的理论和数值研究
- 批准号:
2238360 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
RUI: Extended Metal Atom Chain Complexes of Fe and Co Supported by a C3 Symmetric, Scaffolded Ligand Platform
RUI:C3 对称支架配体平台支持的 Fe 和 Co 的延伸金属原子链配合物
- 批准号:
2245569 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant