Explanation-Based Neural Network Learning

基于解释的神经网络学习

基本信息

  • 批准号:
    9313367
  • 负责人:
  • 金额:
    $ 35.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-12-15 至 1997-10-31
  • 项目状态:
    已结题

项目摘要

This research seeks to combine the two primary paradigms for machine learning: inductive and analytical learning. Inductive methods such as instance-based and neural network learning can reliably learn simple functions from noisy data, but require vast numbers of training examples in order to scale up to very complex functions. In contrast, analytical methods such as explanation-based learning can learn complex functions from much less data, but rely upon strong prior knowledge on the part of the learner. Much current research in machine learning seeks to combine the best of both approaches, to obtain methods that learn more correct generalizations from approximate prior knowledge together with observed data. The proposed research takes a novel approach to this problem: unifying neural network learning and explanation- based learning. More specifically, this research will build on the recently developed explanation-based neural network (EBNN) learning method. Preliminary research has demonstrated experimentally that EBNN can generalize better from fewer examples than pure inductive learning if accurate domain knowledge is available, and that it degrades gracefully with the quality of the learner's prior knowledge. This research will explore more fully the space of combined neural net and explanation-based methods, focusing on issues such as scaling up to more complex learning tasks, alternative types of information that can be extracted from explanations based on neural networks, operating robustly over the entire spectrum from very strong to very weak prior knowledge, and alternative representations for the domain theory and target function. EBNN learning will be applied to two different task domains. If successful, this research could produce learning methods that scale up to more practical problems, and lead to a clearer understanding of the correspondence between symbolic and neural network approaches.
本研究旨在结合机器学习的两种主要范式:归纳学习和分析学习。基于实例和神经网络学习等归纳方法可以可靠地从噪声数据中学习简单函数,但需要大量的训练样例才能扩展到非常复杂的函数。相比之下,基于解释的学习等分析方法可以从更少的数据中学习复杂的函数,但依赖于学习者的强大先验知识。当前机器学习的许多研究都试图结合这两种方法的优点,以获得从近似先验知识和观察数据中学习更正确概括的方法。本研究采用了一种新颖的方法来解决这一问题:将神经网络学习与基于解释的学习统一起来。更具体地说,本研究将建立在最近发展的基于解释的神经网络(EBNN)学习方法的基础上。初步的研究已经通过实验证明,如果有精确的领域知识,EBNN可以从更少的例子中比纯归纳学习更好地进行泛化,并且随着学习者先验知识的质量而优雅地退化。本研究将更充分地探索结合神经网络和基于解释的方法的空间,重点关注以下问题:扩展到更复杂的学习任务,可以从基于神经网络的解释中提取的替代类型的信息,在整个范围内从非常强的先验知识到非常弱的先验知识的鲁棒性操作,以及领域理论和目标函数的替代表示。EBNN学习将应用于两个不同的任务域。如果成功的话,这项研究可能会产生更多实际问题的学习方法,并导致对符号和神经网络方法之间对应关系的更清晰理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tom Mitchell其他文献

Computational Prediction of Synthetic Circuit Function Across Growth Conditions
跨生长条件的合成电路功能的计算预测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Breschine Cummins;R. Moseley;Anastasia Deckard;Mark Weston;G. Zheng;D. bryce;Joshua Nowak;Marcio Gameiro;Tomáš Gedeon;K. Mischaikow;Jacob Beal;Tessa Johnson;M. Vaughn;N. Gaffney;S. Gopaulakrishnan;Joshua Urrutia;Robert P. Goldman;Bryan A. Bartley;Tramy Nguyen;Nicholas Roehner;Tom Mitchell;Justin Vrana;Katie J. Clowers;N. Maheshri;Diveena Becker;Ekaterina Mikhalev;Vanessa Biggers;Trissha R. Higa;Lorraine A. Mosqueda;S. Haase
  • 通讯作者:
    S. Haase
Studying How Digital Luthiers Choose Their Tools
研究数字制琴师如何选择他们的工具
There and Back Again: The Practicality of GPU Accelerated Digital Audio
来来回回:GPU 加速数字音频的实用性
Simple mappings, expressive movement: a qualitative investigation into the end-user mapping design of experienced mid-air musicians
简单的映射,富有表现力的动作:对经验丰富的空中音乐家的最终用户映射设计的定性调查
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Dom Brown;Chris Nash;Tom Mitchell
  • 通讯作者:
    Tom Mitchell
x-OSC: A versatile wireless I/O device for creative/music applications
x-OSC:用于创意/音乐应用的多功能无线 I/O 设备
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sebastian O. H. Madgwick;Tom Mitchell
  • 通讯作者:
    Tom Mitchell

Tom Mitchell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tom Mitchell', 18)}}的其他基金

CDI-TYPE II: From Language to Neural Representations of Meaning
CDI-TYPE II:从语言到意义的神经表征
  • 批准号:
    0835797
  • 财政年份:
    2008
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant
Using Machine Learning and Cognitive Modeling to Understand the fMRI-measured Brain Activation Underlying the Representations of Words and Sentences
使用机器学习和认知模型来了解单词和句子表示背后的功能磁共振成像测量的大脑激活
  • 批准号:
    0423070
  • 财政年份:
    2004
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant
Learning, Visualization, and the Analysis of Large-scale Multiple-media Data
大规模多媒体数据的学习、可视化和分析
  • 批准号:
    9720374
  • 财政年份:
    1997
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant
Symposium on Cognitive and Computer Science: Mind Matters; October 25-27, 1992; Pittsburgh, PA
认知与计算机科学研讨会:心灵很重要;
  • 批准号:
    9220985
  • 财政年份:
    1992
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award (Computer and Information Science)
总统青年研究员奖(计算机与信息科学)
  • 批准号:
    8740522
  • 财政年份:
    1987
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award (Computer Research)
总统青年研究员奖(计算机研究)
  • 批准号:
    8351523
  • 财政年份:
    1984
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Continuing Grant
Improving Problem Solving Strategies By Experimentation
通过实验改进解决问题的策略
  • 批准号:
    8008889
  • 财政年份:
    1980
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
  • 批准号:
    2336525
  • 财政年份:
    2024
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Standard Grant
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 35.59万
  • 项目类别:
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Framework construction and engineering development of polarimetric-interferometric synthetic aperture radar based on phasor-quaternion neural networks
基于相量四元数神经网络的偏振干涉合成孔径雷达框架构建及工程开发
  • 批准号:
    23H00487
  • 财政年份:
    2023
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the circadian clock-based neural mechanism that integrates environmental information and controls seasonal reproduction
基于生物钟的整合环境信息并控制季节繁殖的神经机制分析
  • 批准号:
    23K05848
  • 财政年份:
    2023
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural activity-based candidate gene identification to link eating disorders and drug addiction
基于神经活动的候选基因识别将饮食失调和药物成瘾联系起来
  • 批准号:
    10528062
  • 财政年份:
    2023
  • 资助金额:
    $ 35.59万
  • 项目类别:
Development and application of Rabies Virus-based approaches for genomic editing of neural circuits in healthy and diseased brain
基于狂犬病病毒的健康和患病大脑神经回路基因组编辑方法的开发和应用
  • 批准号:
    EP/W03672X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.59万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了