Learning, Visualization, and the Analysis of Large-scale Multiple-media Data

大规模多媒体数据的学习、可视化和分析

基本信息

  • 批准号:
    9720374
  • 负责人:
  • 金额:
    $ 82.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-10-01 至 2001-09-30
  • 项目状态:
    已结题

项目摘要

This project is being funded through the Learning and Intelligent Systems (LIS) Initiative, with funds partially provided by the MPS/OMA office. Scientific and engineering data now come in large amounts and in new forms. Although the problem of analyzing and learning from purely numerical data has been heavily studied, we currently lack principled methods for analyzing the multiple-media data sets that form the basis of many modern empirical studies. These modern data sets contain a mixture of numerical features, symbolic logic descriptions, images, text, sound, and other media. This project offers an interdisciplinary research effort to create the statistical foundations and practical machine learning algorithms needed to take advantage of the growing number of such multiple-media data sets. The research plan is to develop new approaches to this problem by working with several large-scale multiple-media databases of significant scientific and societal importance. This research will provide the theoretical foundations and practical algorithms for analyzing multiple-media data in a broad range of application domains. For example, many medical institutions now collect detailed patient records that can be analyzed to predict treatment outcomes for future patients. These medical records are typically multiple-media records consisting of numerical features (e.g., temperature), symbolic features (e.g., gender), images (e.g., x-rays), other instrument data (e.g., EKG), text (e.g., physicians' notes), and other data. Current data analysis algorithms simply ignore most of these available features, because we lack well-understood methods for analyzing such multiple-media data. The current research seeks to develop new approaches that will be able to utilize the full information collected in such data sets. The goal is to extend the foundations of data interpretation that form the basis for many experimental sciences and engineering disciplines.
该项目由学习和智能系统倡议资助,部分资金由MPS/OMA办公室提供。 科学和工程数据现在以新的形式大量出现。虽然从纯数值数据中分析和学习的问题已经得到了大量的研究,但我们目前缺乏分析多媒体数据集的原则性方法,这些数据集构成了许多现代实证研究的基础。这些现代数据集包含数字特征、符号逻辑描述、图像、文本、声音和其他媒体的混合。该项目提供了一个跨学科的研究工作,以创建统计基础和实用的机器学习算法,以利用越来越多的多媒体数据集。研究计划是通过与几个具有重大科学和社会重要性的大型多媒体数据库合作,开发解决这一问题的新方法。 该研究将为多媒体数据的分析提供理论基础和实用算法。例如,许多医疗机构现在收集详细的患者记录,可以分析这些记录以预测未来患者的治疗结果。这些医疗记录通常是由数字特征(例如,温度),符号特征(例如,性别),图像(例如,X射线),其它仪器数据(例如,EKG)、文本(例如,医生笔记)和其他数据。目前的数据分析算法简单地忽略了这些可用的功能,因为我们缺乏很好的理解方法来分析这样的多媒体数据。目前的研究试图开发新的方法,将能够利用收集在这些数据集的全部信息。其目标是扩展数据解释的基础,这些基础构成了许多实验科学和工程学科的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tom Mitchell其他文献

Computational Prediction of Synthetic Circuit Function Across Growth Conditions
跨生长条件的合成电路功能的计算预测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Breschine Cummins;R. Moseley;Anastasia Deckard;Mark Weston;G. Zheng;D. bryce;Joshua Nowak;Marcio Gameiro;Tomáš Gedeon;K. Mischaikow;Jacob Beal;Tessa Johnson;M. Vaughn;N. Gaffney;S. Gopaulakrishnan;Joshua Urrutia;Robert P. Goldman;Bryan A. Bartley;Tramy Nguyen;Nicholas Roehner;Tom Mitchell;Justin Vrana;Katie J. Clowers;N. Maheshri;Diveena Becker;Ekaterina Mikhalev;Vanessa Biggers;Trissha R. Higa;Lorraine A. Mosqueda;S. Haase
  • 通讯作者:
    S. Haase
Studying How Digital Luthiers Choose Their Tools
研究数字制琴师如何选择他们的工具
There and Back Again: The Practicality of GPU Accelerated Digital Audio
来来回回:GPU 加速数字音频的实用性
Simple mappings, expressive movement: a qualitative investigation into the end-user mapping design of experienced mid-air musicians
简单的映射,富有表现力的动作:对经验丰富的空中音乐家的最终用户映射设计的定性调查
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Dom Brown;Chris Nash;Tom Mitchell
  • 通讯作者:
    Tom Mitchell
x-OSC: A versatile wireless I/O device for creative/music applications
x-OSC:用于创意/音乐应用的多功能无线 I/O 设备
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sebastian O. H. Madgwick;Tom Mitchell
  • 通讯作者:
    Tom Mitchell

Tom Mitchell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tom Mitchell', 18)}}的其他基金

CDI-TYPE II: From Language to Neural Representations of Meaning
CDI-TYPE II:从语言到意义的神经表征
  • 批准号:
    0835797
  • 财政年份:
    2008
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Using Machine Learning and Cognitive Modeling to Understand the fMRI-measured Brain Activation Underlying the Representations of Words and Sentences
使用机器学习和认知模型来了解单词和句子表示背后的功能磁共振成像测量的大脑激活
  • 批准号:
    0423070
  • 财政年份:
    2004
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Explanation-Based Neural Network Learning
基于解释的神经网络学习
  • 批准号:
    9313367
  • 财政年份:
    1993
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Symposium on Cognitive and Computer Science: Mind Matters; October 25-27, 1992; Pittsburgh, PA
认知与计算机科学研讨会:心灵很重要;
  • 批准号:
    9220985
  • 财政年份:
    1992
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award (Computer and Information Science)
总统青年研究员奖(计算机与信息科学)
  • 批准号:
    8740522
  • 财政年份:
    1987
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award (Computer Research)
总统青年研究员奖(计算机研究)
  • 批准号:
    8351523
  • 财政年份:
    1984
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Improving Problem Solving Strategies By Experimentation
通过实验改进解决问题的策略
  • 批准号:
    8008889
  • 财政年份:
    1980
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant

相似海外基金

III: Small: DeepRep: Unsupervised Deep Representation Learning for Scientific Data Analysis and Visualization
III:小:DeepRep:用于科学数据分析和可视化的无监督深度表示学习
  • 批准号:
    2101696
  • 财政年份:
    2021
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Deep Learning for In Situ Analysis and Visualization
III:媒介:协作研究:用于原位分析和可视化的深度学习
  • 批准号:
    1955764
  • 财政年份:
    2020
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Deep Learning for In Situ Analysis and Visualization
III:媒介:协作研究:用于原位分析和可视化的深度学习
  • 批准号:
    1955395
  • 财政年份:
    2020
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Analysis and Visualization of Class Attitudes and Understanding using Real-time Learning Analytics
使用实时学习分析对班级态度和理解进行分析和可视化
  • 批准号:
    20K03078
  • 财政年份:
    2020
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction and analysis of STEM learning environment with exercises and chat function linked with visualization of knowledge structure
知识结构可视化联动练习、聊天功能的STEM学习环境构建与分析
  • 批准号:
    19K03154
  • 财政年份:
    2019
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applying Deep Learning for Efficient Analysis and Visualization of Biological Data
应用深度学习对生物数据进行高效分析和可视化
  • 批准号:
    524125-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 82.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Research on visualization and analysis using educational big data in the seamless learning environment
无缝学习环境下教育大数据可视化与分析研究
  • 批准号:
    17K12947
  • 财政年份:
    2017
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Analysis and visualization of sequential data for discovery without learning
序列数据的分析和可视化,无需学习即可发现
  • 批准号:
    16K12428
  • 财政年份:
    2016
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Visualization of the Art Learning Process through Project Zero and the Construction of a Supporting Class Analysis System
通过“零计划”实现艺术学习过程可视化及配套班级分析体系构建
  • 批准号:
    22530811
  • 财政年份:
    2010
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implementation of Classroom activity Visualization system that supports the training of analyzing Learners Characteristics of Learning Difficulty based on Dimension Analysis for the Students in the Pre-service Education Course
支持职前教育课程学生基于维度分析的学习者学习困难特征分析训练的课堂活动可视化系统的实现
  • 批准号:
    19700628
  • 财政年份:
    2007
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了