Systems of Nonlinear Partial Differential Equations in Transport Theory
输运理论中的非线性偏微分方程组
基本信息
- 批准号:9321383
- 负责人:
- 金额:$ 12.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9321383 Glassey This award supports research on systems of nonlinear partial differential equations and applications to plasma theory. The work involves both analytical and numerical points of view. The emphasis is on collisional effects in problems arising in plasma physics. This involves the modification of the Vlasov- Maxwell systems through the addition of collision operators of Boltzmann- and Landau-type. The major thrust of this effort is dedicated to the study of Landau damping, in which the long time behavior the initial value problem for the linearized Vlasov equation is prescribed. Work has already been done on finding optimal decay rates in the relativistic case, in which the range of validity is restricted by the fact that collisional effects are neglected. Emphasis will now be placed on understanding decay in the nonrelativistic setting. Studies will also be made on the Vlasov-Einstein system to include a fully relativistic model for stellar dynamic problems. The work is important because of its relation to cosmic censorship. Partial differential equations form a basis for mathematical modeling of the physical world. The role of mathematical analysis is not so much to create the equations as it is to provide qualitative and quantitative information about the solutions. This may include answers to questions about uniqueness, smoothness and growth. In addition, analysis often develops methods for approximation of solutions and estimates on the accuracy of these approximations. ***
小行星9321383 该奖项支持非线性偏微分方程系统的研究和等离子体理论的应用。 这项工作涉及分析和数值的观点。 重点是在等离子体物理中出现的问题的碰撞效应。 这涉及到修改的弗拉索夫-麦克斯韦系统通过添加碰撞算子的玻尔兹曼和朗道型。 本文的主要工作是研究朗道阻尼问题,即线性化Vlasov方程初值问题的长时间行为。 在相对论情况下,人们已经做了寻找最佳衰变率的工作,在这种情况下,有效性的范围受到忽略碰撞效应的限制。 现在重点将放在理解非相对论性环境中的衰变上。 还将对弗拉索夫-爱因斯坦系统进行研究,以包括恒星动力学问题的完全相对论模型。 这项工作很重要,因为它与宇宙审查有关。 偏微分方程是物理世界数学建模的基础。 数学分析的作用与其说是建立方程,不如说是提供关于解的定性和定量信息。 这可能包括关于独特性,平滑性和增长的问题的答案。 此外,分析经常发展出解的近似方法和对这些近似的准确性的估计。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Glassey其他文献
Time decay for nonlinear wave equations in two space dimensions
- DOI:
10.1007/bf01170934 - 发表时间:
1982-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Robert Glassey;Hartmut Pecher - 通讯作者:
Hartmut Pecher
On Maxwell's Equations with a Temperature Effect, II
- DOI:
10.1007/s002200050361 - 发表时间:
1998-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Robert Glassey;Hong-Ming Yin - 通讯作者:
Hong-Ming Yin
Robert Glassey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Glassey', 18)}}的其他基金
Nonlinear Partial Differential Equations in Kinetic Theory
运动理论中的非线性偏微分方程
- 批准号:
0204227 - 财政年份:2002
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations in Kinetic Theory
运动理论中的非线性偏微分方程
- 批准号:
9876820 - 财政年份:1999
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical and Numerical Studies of Nonlinear Hyperbolic Systems
数学科学:非线性双曲系统的分析和数值研究
- 批准号:
9023196 - 财政年份:1991
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Theory of Functions
数学科学:函数的几何理论
- 批准号:
8903031 - 财政年份:1989
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations in Plasma Physics
数学科学:等离子体物理中的非线性偏微分方程
- 批准号:
8721721 - 财政年份:1988
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations in Plasma Physics
数学科学:等离子体物理中的非线性偏微分方程
- 批准号:
8520662 - 财政年份:1986
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations
数学科学:非线性偏微分方程
- 批准号:
8120599 - 财政年份:1982
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
相似海外基金
Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations
偏微分方程非线性双曲型系统现代数值方法的发展与应用
- 批准号:
2208438 - 财政年份:2022
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Interacting Particle Systems and Nonlinear Partial Differential Equations
相互作用的粒子系统和非线性偏微分方程
- 批准号:
2009549 - 财政年份:2020
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1838371 - 财政年份:2018
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1904139 - 财政年份:2018
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves
与非线性波相关的非线性偏微分方程组解全局存在的结构条件和全局解的渐近行为
- 批准号:
18H01128 - 财政年份:2018
- 资助金额:
$ 12.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Regularity of Cauchy-Riemann Mappings and Solutions of Systems of Nonlinear Partial Differential Equations
柯西-黎曼映射的正则性与非线性偏微分方程组的解
- 批准号:
1600024 - 财政年份:2016
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant
Development of a computer-assisted proof method to verify the existence of solutions for systems to large-scale nonlinear elliptic partial differential equations
开发计算机辅助证明方法来验证大规模非线性椭圆偏微分方程系统解的存在性
- 批准号:
16K17651 - 财政年份:2016
- 资助金额:
$ 12.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation Systems
合作研究:时滞和偏微分方程系统的状态约束非线性反馈控制的设计和理论
- 批准号:
1408295 - 财政年份:2014
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Collaborative Research: Designs and Theory of State-Constrained Nonlinear Feedback Controls for Delay and Partial Differential Equation Systems
合作研究:时滞和偏微分方程系统的状态约束非线性反馈控制的设计和理论
- 批准号:
1408376 - 财政年份:2014
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
On the Behavior of Solutions of Einstein's Equations and Other Geometric Nonlinear Partial Differential Equation Systems
关于爱因斯坦方程和其他几何非线性偏微分方程组解的行为
- 批准号:
1306441 - 财政年份:2013
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant