Development and Application of Modern Numerical Methods for Nonlinear Hyperbolic Systems of Partial Differential Equations

偏微分方程非线性双曲型系统现代数值方法的发展与应用

基本信息

  • 批准号:
    2208438
  • 负责人:
  • 金额:
    $ 36.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop new mathematical and computational tools for a large class of hyperbolic conservation and balance laws and related problems. Such systems arise in a wide variety of applications ranging from classical fluid dynamics (gas dynamics including multicomponent and multiphase compressible flows, many shallow water models including rotating shallow water equations, thermal rotating shallow water equations, shallow magnetohydrodynamic equations, and others), astrophysics, meteorology, oceanography, atmospheric sciences, to electromagnetism and modern biological models. While the PI is planning to work on several particular applications, the main focus of the research will be in the development of novel numerical methods and computational techniques that can be applied to a wide class of applied problems arising in today’s science. The project has also a potential to contribute to the emergence of accurate, robust and efficient algorithms and will overall increase the practical applicability on numerical methods. This project involves the training of graduate students. Many practical applications, especially in the cases of high space dimensions, require development and implementation of special numerical methods that are not only consistent with the governing system of partial differential equations, but also preserve certain structural and asymptotic properties of the underlying problem at the discrete level. The project is aimed at the development of efficient high-order methods for systems of conservation and balance laws whose basic properties go beyond consistency, stability and convergence. This will be achieved by designing special numerical techniques for (i) finding a delicate balance between the numerical diffusion and dispersion to ensure sharp—yet non-oscillatory—resolution of shock and contact waves, while achieving a high order accuracy in smooth regions, (ii) exactly preserving physically relevant steady-state solutions and involution constraints, (iii) establishing asymptotic preserving properties in certain stiff regimes, and (iv) analyzing the influence of uncertainties in problems with random data. The design and implementation of the new numerical schemes will be based on high-order shock-capturing finite-volume and finite-difference methods, accurate and efficient time integrators, and stochastic Galerkin and collocation methods, utilizing the main advantages of each of these methods in the context of the studied problems. The derivation of such numerical techniques is fundamental for understanding many physical phenomena and will contribute to their quantitative and qualitative study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是为一大类双曲守恒和平衡定律以及相关问题开发新的数学和计算工具。 这种系统出现在从经典流体动力学(包括多组分和多相可压缩流的气体动力学,包括旋转浅水方程、热旋转浅水方程、浅水磁流体动力学方程等的许多浅水模型)、天体物理学、气象学、海洋学、大气科学到电磁学和现代生物模型的各种应用中。虽然PI计划在几个特定的应用程序上工作,但研究的主要重点将是开发新的数值方法和计算技术,这些方法和技术可以应用于当今科学中出现的广泛的应用问题。该项目也有可能有助于准确,强大和高效的算法的出现,并将全面提高数值方法的实用性。这个项目涉及研究生的培训。许多实际应用,特别是在高空间维数的情况下,需要开发和实施特殊的数值方法,不仅符合偏微分方程的控制系统,但也保持一定的结构和渐近性质的基本问题在离散水平。该项目的目的是为基本性质超越一致性、稳定性和收敛性的守恒律和平衡律系统开发有效的高阶方法。这将通过设计特殊的数值技术来实现:(i)在数值扩散和色散之间找到微妙的平衡,以确保冲击波和接触波的尖锐而非振荡的分辨率,同时在光滑区域实现高阶精度,(ii)精确地保持物理相关的稳态解和对合约束,(iii)在某些刚性区域建立渐近保持特性,以及(iv)分析随机数据问题中不确定性的影响。新的数值格式的设计和实施将基于高阶激波捕获有限体积和有限差分法、精确有效的时间积分器以及随机Galerkin和配置方法,利用这些方法在所研究问题的背景下的主要优点。这种数值技术的推导是理解许多物理现象的基础,并将有助于它们的定量和定性研究。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Characteristic Decomposition Based Central-Upwind Scheme
  • DOI:
    10.1016/j.jcp.2022.111718
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
  • 通讯作者:
    Alina Chertock;Shaoshuai Chu;M. Herty;A. Kurganov;M. Lukáčová-Medvid’ová
A diffuse-domain-based numerical method for a chemotaxis-fluid model
Well-balanced numerical method for atmospheric flow equations with gravity
  • DOI:
    10.1016/j.amc.2022.127587
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
  • 通讯作者:
    Alina Chertock;A. Kurganov;Tong Wu;Jun Yan
Denoising convolution algorithms and applications to SAR signal processing
去噪卷积算法及其在SAR信号处理中的应用
  • DOI:
    10.3934/cac.2023008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chertock, Alina;Leonard, Chris;Tsynkov, Semyon;Utyuzhnikov, Sergey
  • 通讯作者:
    Utyuzhnikov, Sergey
Stochastic Galerkin method for cloud simulation. Part II: a fully random Navier-Stokes-cloud model
  • DOI:
    10.1016/j.jcp.2023.111987
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;A. Kurganov;M. Lukácová-Medvidová;P. Spichtinger;B. Wiebe
  • 通讯作者:
    Alina Chertock;A. Kurganov;M. Lukácová-Medvidová;P. Spichtinger;B. Wiebe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alina Chertock其他文献

A Practical Guide to Deterministic Particle Methods
确定性粒子方法实用指南
  • DOI:
    10.1016/bs.hna.2016.11.004
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock
  • 通讯作者:
    Alina Chertock
Elastic Collisions of Peakons 3 2 Description of the Particle Method for the Camassa-Holm Equation
Peakons 的弹性碰撞 3 2 Camassa-Holm 方程的粒子法描述
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;Jian‐Guo Liu;Terrance Pendleton
  • 通讯作者:
    Terrance Pendleton
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations
设计浅水方程动水平衡保持方案的新方法
  • DOI:
    10.1007/s10915-019-00947-w
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yuanzhen Cheng;Michael Herty;Alina Chertock;Alex;er Kurganov;Alina Chertock
  • 通讯作者:
    Alina Chertock
Modified Optimal Prediction and its Application to a Particle-Method Problem
改进的最优预测及其在粒子法问题中的应用
  • DOI:
    10.1007/s10915-008-9242-4
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Alina Chertock;D. Gottlieb;A. Solomonoff
  • 通讯作者:
    A. Solomonoff
An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
Navier-Stokes-Korteweg 方程松弛的渐近保持方法
  • DOI:
    10.1016/j.jcp.2017.01.030
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alina Chertock;P. Degond;J. Neusser
  • 通讯作者:
    J. Neusser

Alina Chertock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alina Chertock', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818684
  • 财政年份:
    2018
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521051
  • 财政年份:
    2015
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical Methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216974
  • 财政年份:
    2012
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115682
  • 财政年份:
    2011
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Innovative Numerical Methods for Nonlinear Time-Dependent PDEs
非线性瞬态偏微分方程的创新数值方法
  • 批准号:
    0712898
  • 财政年份:
    2007
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Particle Methods for Nonlinear Time-Dependent PDEs
非线性时变偏微分方程的粒子方法
  • 批准号:
    0410023
  • 财政年份:
    2004
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Application of modern data analytics to studying human brain development
现代数据分析在研究人脑发育中的应用
  • 批准号:
    552599-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 36.86万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Development and Application of Cryptotephra Studies to Resolve Debates over Chronology in Modern Human Origins Research in South Africa
合作研究:隐壳虫研究的发展和应用,以解决南非现代人类起源研究中的年代学争论
  • 批准号:
    1460376
  • 财政年份:
    2015
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Collaborative Research - Development and Application of Cryptotephra Studies to Resolve Debates over Chronology in Modern Human Origins Research in South Africa
合作研究 - 隐壳虫研究的发展和应用,以解决南非现代人类起源研究中的年代学争论
  • 批准号:
    1460366
  • 财政年份:
    2015
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
Development and application of geochemical tracers for paleo and modern oceanography
古和现代海洋地球化学示踪剂的开发与应用
  • 批准号:
    312376-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of geochemical tracers for paleo and modern oceanography
古和现代海洋地球化学示踪剂的开发与应用
  • 批准号:
    312376-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of geochemical tracers for paleo and modern oceanography
古和现代海洋地球化学示踪剂的开发与应用
  • 批准号:
    312376-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of electronic modern-literary Japanese dictionary for morphological analysis
日语现代文学电子语词词典的开发与应用
  • 批准号:
    19720110
  • 财政年份:
    2007
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development and application of modern Monte-Carlo methods for the simulation of polymer blends
用于模拟聚合物共混物的现代蒙特卡罗方法的开发和应用
  • 批准号:
    5303708
  • 财政年份:
    2001
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Emmy Noether International Fellowships
Modern analogue for the extinction and development of benthic foraminiferal fauna and its application to Neogene development
底栖有孔虫动物群灭绝和发展的现代模拟及其在新近纪发育中的应用
  • 批准号:
    12640455
  • 财政年份:
    2000
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of Conceptual Understanding in Classical and Modern Physics with Application to Materials Development andInstruction of Precollege Teachers
古典和现代物理学概念理解及其在材料开发和大学预科教师教学中的应用研究
  • 批准号:
    8950322
  • 财政年份:
    1989
  • 资助金额:
    $ 36.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了