Interacting Particle Systems and Nonlinear Partial Differential Equations

相互作用的粒子系统和非线性偏微分方程

基本信息

  • 批准号:
    2009549
  • 负责人:
  • 金额:
    $ 30.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Analysis of large systems of interacting particles is key for predicting and understanding various phenomena arising in different contexts, from physics (in understanding e.g. boson stars) to social studies (when modeling social networks). Since the number of particles is usually very large one would like to understand qualitative and quantitative properties of such systems of particles through some macroscopic, averaged characteristics. In order to identify macroscopic behavior of multi-particle systems, it is helpful to study the asymptotic behavior when the number of particles approaches infinity, with the assumption that the limit will approximate properties observed in the systems with a large finite number of particles. An example of an important phenomenon that describes such macroscopic behavior of a large system of particles is the Bose-Einstein condensation (BEC), which is a state of the matter of a dilute Bose gas at very low temperatures when the gas moves as a single particle. Although the BEC was predicted in early days of quantum mechanics by Bose and Einstein, the first experimental realization came in 1995 (subsequently recognized by a Nobel Prize in physics in 2001). Mathematical models have been developed to understand such phenomena. Those models connect large quantum systems of interacting particles and nonlinear partial differential equations (PDE) that are derived from such systems in the limit of the number of particles going to infinity. However there are still many challenging problems on both ends, that could benefit from an interdisciplinary perspective, and the Principal Investigator will work on these. The PI will continue to explore diverse ways to disseminate the knowledge obtained from the proposed projects via designing and teaching new courses (e.g. the PI designed and taught multiple courses for graduate students at summer schools), training and mentoring graduate students and postdocs, and via organizing as well as attending seminars and research meetings.problems. With fundamental works on derivation of effective equations from quantum many body systems (e.g. nonlinear Schrodinger equation) and effective equations from classical many particle systems (e.g. Boltzmann equation) a new channel of communication between mathematical physics and nonlinear PDE communities has opened, contributing to advances in both areas. In particular, recently remarkable progress has been achieved in the rigorous derivation of nonlinear Schroedinger (NLS) equations from quantum systems of interacting bosons. Motivated by that progress, about a decade ago, the PI and her colleague Chen started studying connections between quantum many particle systems and NLS equation, and consequently together with their collaborators (including 11 PhD students and 3 postdocs) they developed the program of studying quantum many particle systems via ideas and techniques that originated in the context of 1 particle nonlinear PDE, namely the NLS. In the current project, the PI and collaborators will significantly expand the span of the above program to include: derivation of qualitative aspects of nonlinear PDE, such as being Hamiltonian or integrable, and Analysis of classical systems of particles that lead to new kinetic equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对相互作用的大粒子系统的分析是预测和理解在不同背景下出现的各种现象的关键,从物理学(理解玻色子恒星)到社会研究(在对社会网络建模时)。由于粒子的数量通常很大,人们希望通过一些宏观的、平均的特征来了解这种粒子系统的定性和定量性质。为了识别多粒子系统的宏观行为,在假设极限将近似于具有大量有限粒子的系统中观察到的性质的前提下,研究粒子数趋于无穷大时的渐近行为是很有帮助的。描述大粒子系统宏观行为的一个重要现象是玻色-爱因斯坦凝聚(BEC),它是稀薄玻色气体在极低温度下作为单个粒子运动时的一种状态。尽管玻色和爱因斯坦在量子力学的早期就预言了BEC,但第一次实验实现是在1995年(随后在2001年获得了诺贝尔物理学奖)。为了理解这种现象,已经建立了数学模型。这些模型将相互作用的粒子组成的大型量子系统与从这些系统派生出来的非线性偏微分方程(PDE)联系在一起,这些系统的粒子数量有限。然而,两端仍有许多具有挑战性的问题,这些问题可以从跨学科的角度受益,首席调查员将致力于解决这些问题。主办方将继续探索通过设计和教授新课程(例如,主办方为暑期学校的研究生设计和教授多个课程)、培训和指导研究生和博士后,以及通过组织和参加研讨会和研究会议,传播从拟议项目中获得的知识的不同方式。通过从量子多体系统(如非线性薛定谔方程)和经典多粒子系统(如Boltzmann方程)导出有效方程的基础工作,开辟了数学物理和非线性PDE社区之间的新的交流渠道,为这两个领域的进步做出了贡献。特别是,最近在从相互作用玻色子的量子系统严格推导非线性薛定谔(NLS)方程方面取得了显著的进展。在这一进展的推动下,大约十年前,Pi和她的同事Chen开始研究量子多粒子系统与NLS方程之间的联系,因此,他们与他们的合作者(包括11名博士生和3名博士后)一起开发了一个项目,通过起源于单粒子非线性PDE(即NLS)的思想和技术来研究量子多粒子系统。在目前的项目中,PI和合作者将显著扩展上述计划的范围,包括:非线性偏微分方程组的定性方面的推导,例如哈密顿或可积,以及导致新的动力学方程的经典粒子系统的分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates
通过双线性时空估计的玻尔兹曼方程的小数据全局适定性
Global well-posedness of a binary–ternary Boltzmann equation
A Rigorous Derivation of a Boltzmann System for a Mixture of Hard-Sphere Gases
硬球气体混合物玻尔兹曼系统的严格推导
  • DOI:
    10.1137/21m1424779
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Ampatzoglou, Ioakeim;Miller, Joseph K.;Pavlović, Nataša
  • 通讯作者:
    Pavlović, Nataša
Susan Friedlander's Contributions in Mathematical Fluid Dynamics
苏珊·弗里德兰德 (Susan Friedlander) 在数学流体动力学方面的贡献
  • DOI:
    10.1090/noti2237
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheskidov, Alexey;Glatt-Holtz, Nathan;Pavlovic, Natasa;Shvydkoy, Roman;Vicol, Vlad
  • 通讯作者:
    Vicol, Vlad
Rigorous Derivation of a Ternary Boltzmann Equation for a Classical System of Particles
经典粒子系统三元玻尔兹曼方程的严格推导
  • DOI:
    10.1007/s00220-021-04202-y
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ampatzoglou, Ioakeim;Pavlović, Nataša
  • 通讯作者:
    Pavlović, Nataša
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasa Pavlovic其他文献

FRI558 - Inhibiting IRE1a-endonuclease activity potentiates the effect of doxorubicin in hepatocellular carcinoma
FRI558 - 抑制 IRE1a-核酸内切酶活性增强阿霉素在肝细胞癌中的作用
  • DOI:
    10.1016/s0168-8278(22)01605-1
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    Maria Kopsida;Femke Heindryckx;Natasa Pavlovic;Hans Lennernas;Jaafar Khaled
  • 通讯作者:
    Jaafar Khaled

Natasa Pavlovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasa Pavlovic', 18)}}的其他基金

FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
  • 批准号:
    2052789
  • 财政年份:
    2021
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Many-Body Dynamics and Nonlinear Evolution Equations
多体动力学和非线性演化方程
  • 批准号:
    1516228
  • 财政年份:
    2015
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Continuing Grant
From many body quantum dynamics to nonlinear dispersive PDEs, and back
从许多体量子动力学到非线性色散偏微分方程,然后返回
  • 批准号:
    1101192
  • 财政年份:
    2011
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Continuing Grant
On well-posedness and regularity properties for fluid equations and nonlinear dispersive equations
流体方程和非线性色散方程的适定性和正则性
  • 批准号:
    0758247
  • 财政年份:
    2008
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Use of Harmonic Analysis Methods for the Equations of Fluid Motion
调和分析方法在流体运动方程中的应用
  • 批准号:
    0304594
  • 财政年份:
    2003
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2348756
  • 财政年份:
    2023
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2206085
  • 财政年份:
    2022
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2153958
  • 财政年份:
    2022
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
  • 批准号:
    2207572
  • 财政年份:
    2022
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Multiscale Effects and Tail Events for Infinite-Dimensional Processes and Interacting Particle Systems
无限维过程和相互作用粒子系统的多尺度效应和尾部事件
  • 批准号:
    2107856
  • 财政年份:
    2021
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Fluctuations in SPDEs and Interacting Particle Systems
SPDE 的波动和相互作用的粒子系统
  • 批准号:
    2596017
  • 财政年份:
    2021
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Studentship
Understanding plasticity of metals through proving discrete-to-continuum limits of interacting particle systems
通过证明相互作用粒子系统的离散到连续极限来了解金属的可塑性
  • 批准号:
    20K14358
  • 财政年份:
    2020
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了