Applications, Algorithms and Theory of Mathematical Programming

数学规划的应用、算法和理论

基本信息

  • 批准号:
    9322479
  • 负责人:
  • 金额:
    $ 29.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-09-01 至 1999-08-31
  • 项目状态:
    已结题

项目摘要

Highly promising mathematical programming techniques applied to medical diagnosis and prognosis as well as to machine learning in general. Five years of experience with a highly accurate system for breast cancer diagnosis, in current use at University of Wisconsin Hospitals, is drawn upon to develop a linear-programming-based prognostic system. Parallel algorithms for the solution of large-scale constrained optimization problems are developed, by distributing ingredients of the problem (constraints, gradients, or/and variables) among parallel processors. Each processor has complete responsibility for varying its own problem ingredients, while allowing the other ingredients to vary in a restricted fashion. The processors share new information computed, then a fast synchronization is performed and the process is repeated. Preliminary algorithm prototypes have been tested successfully with some high parallelization efficiency on publicly available test problems and significant real-world applications. Error bounds are developed for possibly inconsistent systems of inequalities, programs and complementarity problems. The novel idea here is that the system may be unsolvable, and the bounds are meaningful whether the system is solvable or not. In the latter case, it bounds the distance between the point under consideration, and the set of least error solutions of the system. New mathematical programming approaches to some machine learning problems are studied. In particular a new quadratic programming model for a cascade architecture in neural networks is being studied, as is another one for the inherently difficult problem of minimizing the number of misclassified points by a separating plane.
非常有前途的数学规划技术应用于医学诊断和预后以及一般的机器学习。5年的经验,高度准确的乳腺癌诊断系统,目前在威斯康星大学医院使用,借鉴开发基于线性规划的预后系统。通过在并行处理器之间分配问题的成分(约束、梯度或/和变量),开发了用于解决大规模约束优化问题的并行算法。每个处理器都有责任改变自己的问题成分,同时允许其他成分以有限的方式改变。处理器共享计算的新信息,然后执行快速同步并重复该过程。初步的算法原型已经在公开可用的测试问题和重要的实际应用中成功地测试了一些高并行化效率。给出了可能不一致的不等式、规划和互补问题系统的误差界。这里的新颖思想是系统可能是不可解的,无论系统是否可解,边界都是有意义的。在后一种情况下,它限定了所考虑的点与系统最小误差解集之间的距离。研究了一些机器学习问题的新的数学规划方法。本文特别研究了一种新的神经网络级联结构的二次规划模型,以及另一种利用分离平面最小化错误分类点数量的固有难题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olvi Mangasarian其他文献

Olvi Mangasarian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olvi Mangasarian', 18)}}的其他基金

SEI: Knowledge-Based Data Classification, Approximation and Optimization
SEI:基于知识的数据分类、近似和优化
  • 批准号:
    0511905
  • 财政年份:
    2005
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Mathematical Programming in Data Mining
数据挖掘中的数学规划
  • 批准号:
    0138308
  • 财政年份:
    2002
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Applied Mathematical Programming
应用数学编程
  • 批准号:
    9729842
  • 财政年份:
    1998
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Algorithms, Applications and Theory of Mathematical Programming
数学规划的算法、应用和理论
  • 批准号:
    9101801
  • 财政年份:
    1991
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Large-Scale Serial and Parallel Computational Optimization
大规模串行和并行计算优化
  • 批准号:
    8723091
  • 财政年份:
    1988
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Computational Optimization and Large Scale Systems (Computer Research)
计算优化和大规模系统(计算机研究)
  • 批准号:
    8420963
  • 财政年份:
    1985
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Computation and Theory in Nonlinear Programming
非线性规划的计算和理论
  • 批准号:
    8200632
  • 财政年份:
    1982
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Computation and Theory in Nonlinear Programming
非线性规划的计算和理论
  • 批准号:
    7901066
  • 财政年份:
    1979
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Nonlinear Programming Symposium 4 to Be Held in Madison, Wisconsin on July 14-16, 1980
第四届非线性规划研讨会将于 1980 年 7 月 14 日至 16 日在威斯康星州麦迪逊市举行
  • 批准号:
    7911684
  • 财政年份:
    1979
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Fourth Symposium on Nonlinear Programming, Madison, Wisconsin March 24-26, 1977
第四届非线性规划研讨会,威斯康星州麦迪逊,1977 年 3 月 24-26 日
  • 批准号:
    7624152
  • 财政年份:
    1977
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
  • 批准号:
    MR/Y003926/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Fellowship
Algorithms, Theory, and Applications for Fiber Coating Systems
光纤涂层系统的算法、理论和应用
  • 批准号:
    2309774
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
  • 批准号:
    2312456
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Standard Grant
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Research Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Continuing Grant
Gradient approximations and Hessian approximations: theory, algorithms and applications
梯度近似和 Hessian 近似:理论、算法和应用
  • 批准号:
    559838-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 29.63万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了