Refinements for Generalized Method of Moments Estimation and Testing
广义矩估计和测试方法的改进
基本信息
- 批准号:9409707
- 负责人:
- 金额:$ 20.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-11-01 至 1997-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9409707 Newey This project develops improved inference procedures for some frequently used econometric methods. The goal is to find approximations that improve on the usual large sample approach, and that are easy to implement. The proposal includes two specific projects and extensions. The projects are: bootstrapping for generalized methods of moments estimation and selecting the number of instrumental variables. Generalized method of moments estimation is widely applied in econometrics, so that reliable inference methods are needed. It is known that the usual large sample inferences do not work well in some cases. This project develops an improvement using bootstrap methods. The improvement will require a modification of well known bootstrap methods. It is based on sampling from a distribution that imposes the same moment restrictions as the estimator, which is different than the usual bootstrap. The usefulness of the proposed methods will be illustrated by empirical and simulation examples. The proposed research will also consider extensions of the approach to other models such as those where conditional moment restrictions are imposed. The project also considers inference with instrumental variables. Instrumental variables estimators are one of the most widely applied types of generalized method of moments estimators. An important practical problem is the choice of the number of instrumental variables to use in particular applications. The problem is of particular interest in the recent literature on estimation of "program evaluation" models, where instrumental variables are used to approximate the conditional probability of being treated. This research will use an asymptotic mean-square error criteria to derive some simple rules for choosing the number of instrumental variables. The efficacy of the selection rule will be considered in empirical and simulation examples. Also this research will be extended to consider rules for choosing the number of variables in other models, such as the sample selection model that has been widely used in econometrics.
[409707]本项目为一些常用的计量经济学方法开发了改进的推理程序。目标是找到改进通常的大样本方法的近似方法,并且易于实现。该提案包括两个具体项目和扩展。项目包括:广义矩估计方法的自举和工具变量数量的选择。广义矩估计方法在计量经济学中应用广泛,因此需要可靠的推理方法。众所周知,通常的大样本推断在某些情况下并不奏效。本项目使用自举方法进行改进。改进将需要对众所周知的引导方法进行修改。它是基于从一个分布中采样,该分布施加了与估计器相同的矩限制,这与通常的自举不同。所提出的方法的有效性将通过经验和模拟实例来说明。提出的研究还将考虑将该方法扩展到其他模型,例如施加条件矩限制的模型。该项目还考虑了与工具变量的推断。工具变量估计是广义矩估计方法中应用最广泛的一种。一个重要的实际问题是选择在特定应用中使用的工具变量的数量。这个问题在最近关于“程序评估”模型估计的文献中特别有趣,其中工具变量被用来近似被处理的条件概率。本研究将使用渐近均方误差标准来推导一些选择工具变量数量的简单规则。选择规则的有效性将在经验和模拟实例中加以考虑。此外,本研究还将扩展到考虑其他模型中选择变量数量的规则,例如在计量经济学中广泛使用的样本选择模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Whitney Newey其他文献
The Kink and Notch Bunching Estimators Cannot Identify the Taxable Income Elasticity
扭结和缺口捆绑估计器无法识别应税收入弹性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Blomquist;Whitney Newey - 通讯作者:
Whitney Newey
Adversarial Estimation of Riesz Representers
Riesz 代表的对抗性估计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
V. Chernozhukov;Whitney Newey;Rahul Singh;Vasilis Syrgkanis - 通讯作者:
Vasilis Syrgkanis
Digitized by the Internet Archive in 2011 with Funding from Working Paper Department of Economics Kernel and a Estimation of Partial Means General Variance Estimator
2011 年由互联网档案馆数字化,由经济内核部工作论文和部分均值一般方差估计器的估计资助
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Boston Library;Whitney Newey - 通讯作者:
Whitney Newey
The Influence Function of Semiparametric Estimators by Hidehiko Ichimura
半参数估计量的影响函数作者:Hidehiko Ichimura
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Usui;Emiko;Whitney Newey - 通讯作者:
Whitney Newey
Econometrics and Economic Theory in the 20th Century: Nonparametric Estimation of Exact Consumer Surplus and Deadweight Loss
20世纪的计量经济学和经济理论:精确消费者剩余和无谓损失的非参数估计
- DOI:
10.1017/ccol521633230.004 - 发表时间:
1999 - 期刊:
- 影响因子:1.8
- 作者:
J. Hausman;Whitney Newey - 通讯作者:
Whitney Newey
Whitney Newey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Whitney Newey', 18)}}的其他基金
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
- 批准号:
2242447 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Demand Analysis with Many Prices: Methods and Application
多种价格的需求分析:方法与应用
- 批准号:
1757140 - 财政年份:2018
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Unrestricted Individual Heterogeneity in Three Econometric Models
三种计量经济学模型中不受限制的个体异质性
- 批准号:
1132399 - 财政年份:2011
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Identification and Inference in Structural Models
结构模型中的识别和推理
- 批准号:
0136869 - 财政年份:2002
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Efficient Refinements for Large Sample Inference
大样本推理的高效改进
- 批准号:
9810356 - 财政年份:1998
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Development of Computer Cluster for the Department of Economics at the Massachusetts Institute of Technology
麻省理工学院经济系计算机集群开发
- 批准号:
9512139 - 财政年份:1995
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Computer Workstations for Applied Economics Research
应用经济学研究计算机工作站
- 批准号:
9115810 - 财政年份:1992
- 资助金额:
$ 20.39万 - 项目类别:
Standard Grant
Nonparametric Estimation of Econometric Models
计量经济模型的非参数估计
- 批准号:
9110039 - 财政年份:1991
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
Nonlinear Models with Individual Effects
具有个体效应的非线性模型
- 批准号:
8810049 - 财政年份:1988
- 资助金额:
$ 20.39万 - 项目类别:
Continuing Grant
相似国自然基金
三维流形的Generalized Seifert Fiber分解
- 批准号:11526046
- 批准年份:2015
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Development of Deep Machine Learning Method for Generalized State Space Models Using Prior Knowledge Constraints and Weak Learning
使用先验知识约束和弱学习的广义状态空间模型深度机器学习方法的开发
- 批准号:
23H00471 - 财政年份:2023
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research on AdS/CFT correspondence by the generalized flow method
广义流法研究AdS/CFT对应关系
- 批准号:
22H00129 - 财政年份:2022
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of a generalized method for nonpoint source load estimation
非点源负荷估计通用方法的开发
- 批准号:
21K05828 - 财政年份:2021
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated form finding, simulation and optimization using the generalized force density method based on mixed functionals
使用基于混合泛函的广义力密度方法集成找形、仿真和优化
- 批准号:
434336509 - 财政年份:2020
- 资助金额:
$ 20.39万 - 项目类别:
Research Grants
Identification of key molecules in generalized chronic pain disease by use of eRNA-CAGE method toward DNA vaccine treatments
利用 eRNA-CAGE 方法鉴定全身性慢性疼痛疾病的关键分子用于 DNA 疫苗治疗
- 批准号:
19K21592 - 财政年份:2019
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Fine tuning of an electrocatalyst for CO2 reduction based on a generalized method analyzing the scaling relationship
基于分析缩放关系的通用方法对二氧化碳还原电催化剂进行微调
- 批准号:
18K05159 - 财政年份:2018
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realization of variable molecular dynamics simulations by generalized cutoff method and double density dynamics
利用广义截止法和双密度动力学实现变分子动力学模拟
- 批准号:
17K05143 - 财政年份:2017
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adaptive image restoration method based on generalized principal component analysis and its application
基于广义主成分分析的自适应图像恢复方法及其应用
- 批准号:
16K16091 - 财政年份:2016
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Method of Generalized Influence functions - Adjoint Sensitivity Analysis for the Effective and Efficient Numerical Design of Structures with special Application for Reliability and Uncertainty Modelling, 2nd research period
广义影响函数方法 - 有效且高效的结构数值设计的伴随敏感性分析,特别应用于可靠性和不确定性建模,第二研究期
- 批准号:
312865274 - 财政年份:2016
- 资助金额:
$ 20.39万 - 项目类别:
Priority Programmes
A method for Knowledge Creation and Knowledge Utilization by Generalized Inverse Operator for Big Data
大数据广义逆算子知识创建与知识利用方法
- 批准号:
15K12024 - 财政年份:2015
- 资助金额:
$ 20.39万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research