Fast Algorithms for Large Scale Convex Optimization Involving Linear Matrix Inequality
涉及线性矩阵不等式的大规模凸优化的快速算法
基本信息
- 批准号:9411664
- 负责人:
- 金额:$ 16.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-09-15 至 1998-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9411664 Fan With recent dramatic increase in available computing power, numerical optimization has become an attractive tool for analysis and design of complex systems. There are a large number of problems in science and engineering which can be formulated as convex optimization problems involving linear matrix inequality. This problem is inherently difficult to solve as the nonsmoothness usually occurs at the solution. Further, as systems are becoming more complex, the resulting optimization problems tend to have a large number of decision variables as well as constraints. Therefore, several basic computation components such as inversion of a matrix, eigenvalue and eigenvector calculation, or evaluation of the Hessian matrix, that needed for most methods become either prohibited or very costly to perform. It is then necessary to use approximations and yet have the fast rate of convergence preserved. ***
随着近年来计算能力的急剧提高,数值优化已经成为复杂系统分析和设计的一个有吸引力的工具。 在科学和工程中有大量的问题可以转化为涉及线性矩阵不等式的凸优化问题。 这个问题本身就很难解决,因为非光滑性通常发生在解处。 此外,随着系统变得越来越复杂,所产生的优化问题往往具有大量的决策变量以及约束。 因此,大多数方法所需的几个基本计算组件,例如矩阵求逆、特征值和特征向量计算或Hessian矩阵的评估,变得被禁止或执行起来非常昂贵。 然后,有必要使用近似,但仍保持快速收敛。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ko-Hui Michael Fan其他文献
Ko-Hui Michael Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
- 批准号:
23K11226 - 财政年份:2023
- 资助金额:
$ 16.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
- 批准号:
2323533 - 财政年份:2023
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
- 批准号:
2132212 - 财政年份:2022
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 16.32万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Algorithms for Uncertainty Quantification in Large-Scale Inverse Problems
职业:大规模反问题中不确定性量化的快速准确算法
- 批准号:
1845406 - 财政年份:2019
- 资助金额:
$ 16.32万 - 项目类别:
Continuing Grant
Research on the development of fast and robust algorithms for large-scale eigenvalue problems
大规模特征值问题快速鲁棒算法开发研究
- 批准号:
17K14143 - 财政年份:2017
- 资助金额:
$ 16.32万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 16.32万 - 项目类别:
Research Grants
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
- 批准号:
1719461 - 财政年份:2016
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Inference of Information Measures on Large Alphabets: Fundamental Limits, Fast Algorithms, and Applications
CIF:小型:协作研究:大字母表上信息测量的推断:基本限制、快速算法和应用
- 批准号:
1528159 - 财政年份:2015
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
- 批准号:
1419100 - 财政年份:2014
- 资助金额:
$ 16.32万 - 项目类别:
Standard Grant