Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
基本信息
- 批准号:1419100
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns development and analysis of new numerical algorithms for large-scale algebraic eigenproblems with nonlinearity in eigenvalues, eigenvectors, and parameters. These eigenproblems arise in electronic structure calculation, design of accelerator cavities, delay differential equations, vibration analysis of complex structures, and many more. Structure-preserving linearization techniques that have been developed recently are competitive for small or medium polynomial and rational eigenproblems, but they entail high computational costs for large-scale simulations due to the significantly enlarged dimension of linearized problems. In addition, linearization introduces considerable complications for the development of preconditioners, and it is not applicable to eigenproblems with full nonlinearity. The PI shall develop novel iterative projection methods that are accurate, robust and efficient, for the solution of large-scale truly nonlinear eigenproblems. This goal can be achieved in part by exploration of special properties of different types of nonlinear eigenproblems that enable solution strategies similar to those for linear eigenproblems. This investigation is focused on ( 1) new preconditioned eigensolvers, including conjugate-gradient-like and minimal-residual-like methods, for efficient solution of a large number of extreme and interior eigenvalues of problems with nonlinearity in eigenvalues, with and without the variational principle; (2) fast inexact Newton-like methods to solve parameter-dependent degenerate eigenproblem for the study of (in)stabilities of dynamical systems; (3) efficient algorithms for solving eigenproblems with nonlinearity in eigenvectors arising from condensed matter physics and electronic structure calculation. The research will develop a systematic and unified treatment of mathematical theory and development of numerical software.
该项目涉及大规模代数特征问题的新的数值算法的开发和分析,该问题具有特征值、特征向量和参数的非线性。这些本征问题出现在电子结构计算、加速器腔设计、延迟微分方程、复杂结构的振动分析等许多方面。最近发展起来的结构保持线性化技术对于中小型多项式和有理特征问题是有竞争力的,但由于线性化问题的规模显著扩大,它们在大规模模拟中需要很高的计算代价。此外,线性化给预条件函数的发展带来了相当大的复杂性,并且不适用于具有完全非线性的特征问题。PI应开发准确、稳健和高效的新的迭代投影方法,用于解决大规模真正的非线性特征问题。这一目标可以通过探索不同类型的非线性特征问题的特殊性质来部分实现,这些特征问题使得解决策略类似于线性特征问题的策略。这项研究的重点是:(1)新的预条件本征解方法,包括共轭梯度类方法和最小余量类方法,用于有效地求解具有特征值非线性的问题的大量极值和内特征值,包括变分原理;(2)用于研究动力学系统稳定性的快速非精确牛顿类方法;(3)用于求解凝聚态物理和电子结构计算中特征向量非线性的特征问题的高效算法。本研究将为数学理论的系统统一处理和数值软件的开发奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Xue其他文献
Effect of Irradiation on Austenite Phase in Thermally Aged 308 Stainless Steel Weld Metal
辐照对热时效308不锈钢焊缝金属奥氏体相的影响
- DOI:
10.1088/1757-899x/677/2/022040 - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
Yuanfei Li;Xiangbing Liu;Fei Xue;Chaoliang Xu;Wangjie Qian;Jinyu Li;Qunjia Peng;Zhengcao Li - 通讯作者:
Zhengcao Li
Real-time Temperature Monitoring System Design Based on MATLAB GUI
基于MATLAB GUI的实时温度监测系统设计
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Fei Xue;Youliang Yang;Futao Dong - 通讯作者:
Futao Dong
Rapid milk intake of captive giant panda cubs during the early growth stages
圈养大熊猫幼崽生长早期快速吸奶
- DOI:
10.25225/fozo.v67.i3-4.a7.2018 - 发表时间:
2018-12 - 期刊:
- 影响因子:0
- 作者:
Xiangming Huang;Mingxi Li;Fei Xue;Chengdong Wang;Zhihe Zhang;Kongju Wu;Kuixing Yang;Dunwu Qi - 通讯作者:
Dunwu Qi
Structural and physical properties of Ti-doped BiFeO3 nanoceramics
Ti掺杂BiFeO3纳米陶瓷的结构和物理性能
- DOI:
10.1016/j.ceramint.2017.12.013 - 发表时间:
2018-03 - 期刊:
- 影响因子:5.2
- 作者:
Yahui Tian;Fei Xue;Qiuyun Fu;Ling Zhou;Chaohong Wang;Haibo Gou;Mingzhi Zhang - 通讯作者:
Mingzhi Zhang
Effect of Annealing Temperature on the Stress and Structural Properties of Germanium Core Fibre
退火温度对锗芯光纤应力和结构性能的影响
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.8
- 作者:
Ziwen Zhao;Xueli Cheng;Fei Xue;Ting He;Tingyun Wang - 通讯作者:
Tingyun Wang
Fei Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Xue', 18)}}的其他基金
RII Track-4:NSF: Spin-orbitronics in quantum materials for energy-efficient neuromorphic computing
RII Track-4:NSF:量子材料中的自旋轨道电子学用于节能神经形态计算
- 批准号:
2229498 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Integrative approaches with applications in eQTL analysis and randomized trials
综合方法在 eQTL 分析和随机试验中的应用
- 批准号:
2210860 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Computational Methods for Large Algebraic Eigenproblems with Special Structures
具有特殊结构的大型代数本征问题的计算方法
- 批准号:
2111496 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
New Preconditioned Solvers for Large and Complex Eigenvalue Problems
用于大型复杂特征值问题的新预处理求解器
- 批准号:
1819097 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Supporting and Sustaining Scholarly Mathematics Teaching
支持和维持学术数学教学
- 批准号:
1725952 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
- 批准号:
1719461 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
- 批准号:
23K11226 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
- 批准号:
2323533 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10784562 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
- 批准号:
2132212 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Fast, large area, multiphoton exoscope (FLAME) for improving early detection of melanoma
快速、大面积、多光子外窥镜 (FLAME) 用于改善黑色素瘤的早期检测
- 批准号:
10687990 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Fast, large area, multiphoton exoscope (FLAME) for improving early detection of melanoma
快速、大面积、多光子外窥镜 (FLAME) 用于改善黑色素瘤的早期检测
- 批准号:
10365803 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10573337 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
- 批准号:
10371213 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10089406 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:














{{item.name}}会员




