CAREER: Fast and Accurate Algorithms for Uncertainty Quantification in Large-Scale Inverse Problems
职业:大规模反问题中不确定性量化的快速准确算法
基本信息
- 批准号:1845406
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The need to visualize regions that are impossible to see with the naked eye is pervasive in everyday life. For example, in medicine, accurate visualization of tissue is needed to diagnose and treat tumors. A key step in imaging technologies requires one to solve an inverse problem in order to transform measured data into detailed image reconstructions of the quantities of interest. However, image reconstruction is inherently uncertain, in part, due to noisy measurements from sensors. Ignoring the uncertainty in the imaging process can lead to undesirable outcomes, such as misjudging the location and spread of a suspected tumor. Uncertainty Quantification (UQ) in imaging is in its infancy and hence, the potential for impact in research contributions is high. UQ for imaging is computationally challenging since thousands of inversions are needed beyond the initial inversion to generate accurate statistics of the uncertainty. Current approaches for UQ are inadequate because they either fail to deliver solutions in a reasonable computational time or they lack the applicability across a broad range of imaging technologies.The project is on the development of fast algorithms for UQ in large-scale inverse problems that are applicable to a broad range of imaging technologies. These algorithms are expected to bring down the computational cost by at least an order of magnitude while maintaining the accuracy of the solutions. More specifically, the project will (1) Advance image reconstruction and UQ techniques for incorporating prior information based on fractional partial differential equation (PDE) and Bayesian level set approaches; and (2) Develop new algorithms and analysis for data-driven dimensionality techniques for UQ in Bayesian inverse problems, using randomized and Krylov subspace methods. The algorithms developed here will be rigorously analyzed and validated on several model problems and applications, including diffuse optical and photoacoustic tomography (in biomedicine) and hydraulic tomography and satellite data fusion (in geoscience). The algorithms developed here are also applicable to other imaging-based inverse problems in biomedicine, geophysics, materials science, etc. Outside of imaging applications, these mathematical advances will be of interest to scientists working in many areas of computational science, for example, fractional partial differential equations (PDEs), model reduction, tensor decompositions, and principal component analysis. Lastly, the PI's education and outreach activities will make UQ and imaging technologies more modular, accessible, and easier to understand for pre-service and early career K-12 educators, undergraduate students, and graduate students. Specifically, the educational program of this project will: (1) Strengthen STEM education through teacher training workshops and practical research experiences for pre-service and early career K-12 teachers, which will result in reproducible teaching modules for use in K-12 education; and (2) Enhance undergraduate and graduate curriculum at North Carolina State University by creating accessible seminar talks and new course content.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在日常生活中,对肉眼无法看到的区域进行可视化的需求非常普遍。例如,在医学上,诊断和治疗肿瘤需要准确的组织可视化。成像技术中的一个关键步骤需要解决逆问题,以便将测量数据转换为感兴趣数量的详细图像重建。然而,图像重建本质上是不确定的,部分原因是来自传感器的噪声测量。忽视成像过程中的不确定性可能会导致不良结果,例如误判疑似肿瘤的位置和扩散。成像中的不确定性量化(UQ)还处于初级阶段,因此,对研究贡献产生影响的可能性很高。成像的UQ在计算上具有挑战性,因为除了最初的反演之外,还需要数千次反演才能生成准确的不确定性统计数据。现有的UQ方法不能在合理的计算时间内提供解,或者缺乏对多种成像技术的适用性。该项目致力于开发适用于广泛成像技术的大规模反问题的快速算法。这些算法有望在保持解的准确性的同时,将计算成本降低至少一个数量级。更具体地说,该项目将(1)推进基于分数偏微分方程(PDE)和贝叶斯水平集方法的图像重建和UQ技术;以及(2)利用随机化和Krylov子空间方法,为贝叶斯反问题中UQ的数据驱动维度技术开发新的算法和分析。本文开发的算法将在几个模型问题和应用上进行严格的分析和验证,包括扩散光学和光声层析成像(在生物医学中)和水力层析成像和卫星数据融合(在地球科学中)。这里开发的算法也适用于生物医学、地球物理、材料科学等领域中其他基于成像的反问题。除了成像应用之外,这些数学进展将引起许多计算科学领域的科学家的兴趣,例如,分数阶偏微分方程组(PDE)、模型降阶、张量分解和主成分分析。最后,PI的教育和推广活动将使UQ和成像技术更模块化、更容易获得,更容易为任职前和职业生涯早期的K-12教育工作者、本科生和研究生理解。具体地说,该项目的教育计划将:(1)通过为任职前和职业早期的K-12教师举办教师培训讲习班和实践研究经验来加强STEM教育,这将导致可重复使用的教学模块用于K-12教育;以及(2)通过创建无障碍研讨会演讲和新的课程内容来增强北卡罗来纳州立大学的本科生和研究生课程。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kryging: geostatistical analysis of large-scale datasets using Krylov subspace methods
Kryging:使用 Krylov 子空间方法对大规模数据集进行地统计分析
- DOI:10.1007/s11222-022-10104-3
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:Majumder, Suman;Guan, Yawen;Reich, Brian J.;Saibaba, Arvind K.
- 通讯作者:Saibaba, Arvind K.
Randomized algorithms for generalized singular value decomposition with application to sensitivity analysis
- DOI:10.1002/nla.2364
- 发表时间:2020-02
- 期刊:
- 影响因子:4.3
- 作者:A. Saibaba;Joseph L. Hart;B. V. B. Waanders-B.-V.-B.-Waanders-1863062
- 通讯作者:A. Saibaba;Joseph L. Hart;B. V. B. Waanders-B.-V.-B.-Waanders-1863062
Efficient Krylov subspace methods for uncertainty quantification in large Bayesian linear inverse problems
- DOI:10.1002/nla.2325
- 发表时间:2020-08
- 期刊:
- 影响因子:4.3
- 作者:A. Saibaba;Julianne Chung;Katrina Petroske
- 通讯作者:A. Saibaba;Julianne Chung;Katrina Petroske
Efficient Algorithms for Bayesian Inverse Problems with Whittle–Matérn Priors
使用 Whittle-Matérn 先验的贝叶斯反问题的高效算法
- DOI:10.1137/22m1494397
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Antil, Harbir;Saibaba, Arvind K.
- 通讯作者:Saibaba, Arvind K.
Monte Carlo Methods for Estimating the Diagonal of a Real Symmetric Matrix
估计实对称矩阵对角线的蒙特卡罗方法
- DOI:10.1137/22m1476277
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Hallman, Eric;Ipsen, Ilse C.;Saibaba, Arvind K.
- 通讯作者:Saibaba, Arvind K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arvind Saibaba其他文献
Arvind Saibaba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arvind Saibaba', 18)}}的其他基金
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
- 批准号:
2026830 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: A Tensor-Based Computational Framework for Model Reduction and Structured Matrices
协作研究:基于张量的模型简化和结构化矩阵计算框架
- 批准号:
1821149 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
- 批准号:
1720398 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于FAST搜寻及观测的脉冲星多波段辐射机制研究
- 批准号:12403046
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
FAST连续观测数据处理的pipeline开发
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
使用FAST开展河外中性氢吸收线普查
- 批准号:12373011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
- 批准号:12373012
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
- 批准号:12373001
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
- 批准号:12373109
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
基于FAST的纳赫兹引力波研究
- 批准号:LY23A030001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
- 批准号:
24K20903 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
- 批准号:
23K11226 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Strep-CaDI: A fast, accurate, and sensitive point-of-care test for Group A Streptococcus
Strep-CaDI:快速、准确且灵敏的 A 组链球菌现场检测
- 批准号:
10699852 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fast, Accurate, Compact, Trustable, low Cost and Power (FACTCoP) sub-THz/THz Dielectric Sensor for Ubiquitous Access
快速、准确、紧凑、可靠、低成本和低功耗 (FACTCoP) 亚太赫兹/太赫兹介电传感器,实现无处不在的接入
- 批准号:
2241337 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Influence of visual information presented through a transparent head-mounted display on fast and accurate movements
通过透明头戴式显示器呈现的视觉信息对快速准确运动的影响
- 批准号:
23K10606 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Fast and Accurate Computational Method through Learning-based Iterative Alternating Optimization
通过基于学习的迭代交替优化开发快速准确的计算方法
- 批准号:
23K16953 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantum Computing based density functionals for fast and accurate materials and chemistry simulations
基于量子计算的密度泛函,用于快速、准确的材料和化学模拟
- 批准号:
10074167 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Feasibility Studies
Fast and accurate self-monitoring tests for better adherence to exercise and diet
快速准确的自我监测测试,以更好地坚持运动和饮食
- 批准号:
10046930 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant for R&D
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




