Spatial Reasoning for Machine Understanding of Solid Models
机器理解实体模型的空间推理
基本信息
- 批准号:9414523
- 负责人:
- 金额:$ 25.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-05-01 至 2001-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IRI-9414523 Michael M. Marefat University of Arizona $78,552 - 12 mos. Spatial Reasoning for Machine Understanding of Solid Models This is the first year funding of a three-year research project with the objectives of studying and developing geometric reasoning mechanisms and knowledge representation methods for modeling and recognition of semantic shape features that will be useful in industrial design and manufacturing. A person or a machine that is going to perceive objects in order to interact with them in any way must do more than see the objects; it is necessary to recognize them as what they are, to attach a meaning to them. Actually seeing the objects as individual items with particular shapes and features is part of perception, and involves geometric reasoning. Attaching meaning to the objects means that there must be an internalknowledge representation for what is significant about them. A mapping from a set of geometric features to a meaning in terms of the knowledge representation is called semantics, after the analogous mapping in language. As the product life cycles become shorter and product variety increases, it is crucial to minimize the lag period between the start of a product's design and the time it is produced. This project includes applying the developed geometric reasoning models and mechanisms to solve important issues in machine understanding of designs, automated generation of process planning strategies, and automated visual inspection based on solid models. Initial promising results have been obtained on these problems. Further investigation will be performed systematically to develop the concepts and the mechanisms. In addition, the application of the concepts and mechanisms to the development of information driven intelligent integrated environments for flexible design and production will be studied.
IRI-9414523亚利桑那州迈克尔·M·马雷法特大学,78,552-12个月。用于实体模型机器理解的空间推理这是一项为期三年的研究项目的第一年资助,其目标是研究和开发几何推理机制和知识表示方法,用于建模和识别将在工业设计和制造中有用的语义形状特征。为了以任何方式与物体互动,一个人或一台机器要感知物体,必须做的不仅仅是看到物体;有必要认识到它们是什么,赋予它们一个意义。实际上,将物体视为具有特定形状和特征的单独物品是感知的一部分,涉及几何推理。赋予对象意义意味着它们的重要之处必须有一个内在的知识表示。从一组几何特征到知识表示意义的映射称为语义,类似于语言中的映射。随着产品生命周期的缩短和产品种类的增加,最大限度地减少产品设计开始和生产时间之间的滞后期是至关重要的。该项目包括应用开发的几何推理模型和机制来解决机器对设计的理解、工艺规划策略的自动生成以及基于实体模型的自动视觉检查等重要问题。在这些问题上取得了初步的有希望的结果。将进行系统的进一步研究,以发展这些概念和机制。此外,还将研究这些概念和机制在开发面向柔性设计和生产的信息驱动智能集成环境中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Marefat其他文献
Michael Marefat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Marefat', 18)}}的其他基金
REU Site: Undergraduate Research Experiences in Long Range Communications with Ham Radios, Cool Algorithms, and Innovative Antennas
REU 网站:利用业余无线电、酷算法和创新天线进行远程通信的本科生研究经验
- 批准号:
1852199 - 财政年份:2019
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
SGER: Flexible Active Computer Integrated Inspection Based on Computer-Aided Design Models
SGER:基于计算机辅助设计模型的柔性主动计算机集成检测
- 批准号:
9319208 - 财政年份:1993
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Research Initiation: A Qualitative Model for Geometry and Structure, and its Applications to an Integrated Design, Manufacturing Planning and Inspection Environment
研究启动:几何和结构的定性模型及其在集成设计、制造规划和检测环境中的应用
- 批准号:
9210018 - 财政年份:1992
- 资助金额:
$ 25.56万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
$ 25.56万 - 项目类别:
Continuing Grant
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
- 批准号:
2402833 - 财政年份:2024
- 资助金额:
$ 25.56万 - 项目类别:
Continuing Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226553 - 财政年份:2023
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226601 - 财政年份:2023
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Probabilistic reasoning and machine learning
概率推理和机器学习
- 批准号:
RGPIN-2020-05070 - 财政年份:2022
- 资助金额:
$ 25.56万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic reasoning and machine learning
概率推理和机器学习
- 批准号:
RGPIN-2020-05070 - 财政年份:2021
- 资助金额:
$ 25.56万 - 项目类别:
Discovery Grants Program - Individual
A Machine Learning Approach to Improve Students’ Scientific Reasoning and Writing
提高学生科学推理和写作能力的机器学习方法
- 批准号:
2020784 - 财政年份:2021
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-tunneling Junction Network
EAGER:协作研究:磁隧道结网络上的贝叶斯推理机
- 批准号:
2001239 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Standard Grant
Smart personalised customer services by federated machine learning and evidential reasoning
通过联合机器学习和证据推理提供智能个性化客户服务
- 批准号:
2493399 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Studentship
Probabilistic reasoning and machine learning
概率推理和机器学习
- 批准号:
RGPIN-2020-05070 - 财政年份:2020
- 资助金额:
$ 25.56万 - 项目类别:
Discovery Grants Program - Individual