A Machine Learning Approach to Improve Students’ Scientific Reasoning and Writing

提高学生科学推理和写作能力的机器学习方法

基本信息

  • 批准号:
    2020784
  • 负责人:
  • 金额:
    $ 29.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This project aims to serve the national interest by improving the scientific reasoning skills of undergraduates in general education STEM courses. Specifically, the project focuses on helping students learn to recognize scientific arguments and use evidence-based (scientific) reasoning. Introductory courses are typically the last formal exposure to science that non-science students will have. Thus, general education STEM courses have a significant role in increasing civic science literacy. To support this goal, the project will create a writing dashboard that uses a machine learning algorithm to score how well a student’s written response supports its claims with scientific evidence. The project will also develop a web browser extension that trains students to determine whether articles on the internet provide evidence to support scientific claims. Once the dashboard and web browser extension are developed in this exploratory project, the machine learning tools can be improved and deployed nationally for use by undergraduate students and instructors. These tools have the potential for significant impact on undergraduate education, since they can assist instructors with assessing and providing feedback on writing, even in large classes. Tools that can automate the process, even partially, could enhance the use of written assignments and assessments in STEM classes, thus helping students increase their reasoning and written communication skills.This project will implement and study the efficacy of a writing dashboard and browser extension in three large introductory science courses. The dashboard will identify pairs of phrases that represent claims and evidence to support those claims. It will also score writing based on its use of jargon and its readability. The dashboard will be designed for instructors to use as a formative assessment tool that can provide constructive feedback on student writing. It will complement the instructor’s grading process, providing a vehicle for discussing attributes associated with good scientific writing. The web browser extension will help students identify evidence-based scientific claims on the internet. Using the same machine learning technology as the writing dashboard, the browser extension will identify and highlight claims and evidence in articles available online and give an overall rating for the article’s likely scientific quality, along with a rationale for the rating. The tools will be studied in three introductory science courses taken by non-science majors: astronomy, geosciences, and evolutionary biology. Students will be required to use the dashboard for three writing assignments, and they will use the browser extension for activities that require them to review and rate online scientific articles. To study potential improvements in students’ scientific reasoning capacity, the project will adapt existing survey instruments and administer the revised surveys to students before and after the intervention. Instructors will be interviewed to understand the utility of the tools in the classroom. Beyond the university setting, these tools can also be used in high schools and the browser extension can be deployed in libraries and other informal settings to help improve scientific literacy and reasoning skills within the general population. This project is supported by the NSF Improving Undergraduate STEM Education Program: Education and Human Resources Program, which supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过提高普通教育STEM课程本科生的科学推理能力来服务于国家利益。具体来说,该项目的重点是帮助学生学习认识科学论证和使用基于证据的(科学)推理。入门课程通常是非理科学生最后一次正式接触科学。 因此,通识教育STEM课程在提高公民科学素养方面发挥着重要作用。为了支持这一目标,该项目将创建一个写作仪表板,该仪表板使用机器学习算法来评估学生的书面回应如何支持其科学证据。该项目还将开发一个网络浏览器扩展程序,训练学生判断互联网上的文章是否提供了支持科学主张的证据。一旦在这个探索性项目中开发了仪表板和Web浏览器扩展,机器学习工具就可以在全国范围内得到改进和部署,供本科生和教师使用。 这些工具有可能对本科教育产生重大影响,因为它们可以帮助教师评估和提供写作反馈,即使是在大班。 可以自动化这个过程的工具,即使是部分,可以提高STEM课程中书面作业和评估的使用,从而帮助学生提高他们的推理和书面沟通技巧。这个项目将在三个大型入门科学课程中实施和研究写作仪表板和浏览器扩展的功效。仪表板将识别代表索赔的短语对和支持这些索赔的证据。它还将根据行话的使用和可读性对写作进行评分。仪表板将被设计为教师使用作为一个形成性的评估工具,可以提供对学生的写作建设性的反馈。它将补充教师的评分过程,为讨论与良好的科学写作相关的属性提供一个工具。网络浏览器扩展将帮助学生在互联网上识别基于证据的科学主张。使用与写作仪表板相同的机器学习技术,浏览器扩展将识别和突出显示在线文章中的声明和证据,并对文章可能的科学质量进行总体评级,沿着评级的理由。这些工具将在非科学专业的三门入门科学课程中学习:天文学,地球科学和进化生物学。学生将被要求使用三个写作作业的仪表板,他们将使用浏览器扩展的活动,需要他们审查和评价在线科学文章。为了研究学生科学推理能力的潜在改进,该项目将调整现有的调查工具,并在干预前后对学生进行修订后的调查。教师将接受采访,以了解在课堂上的工具的效用。除了大学环境之外,这些工具还可以在高中使用,浏览器扩展可以部署在图书馆和其他非正式环境中,以帮助提高普通人群的科学素养和推理技能。该项目由NSF改善本科STEM教育计划:教育和人力资源计划支持,该计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Impey其他文献

Christopher Impey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Impey', 18)}}的其他基金

Investigating the Landscape of Undergraduate Science Literacy
调查本科生科学素养状况
  • 批准号:
    1244799
  • 财政年份:
    2013
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: International: Fueling of Faint Active Galactic Nuclei: Obscured or Intrinsically Weak
博士论文研究:国际:微弱活跃星系核的燃料:模糊或本质上微弱
  • 批准号:
    0943995
  • 财政年份:
    2009
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Probing the Limits of Nuclear Activity in COSMOS
探索宇宙中核活动的极限
  • 批准号:
    0908044
  • 财政年份:
    2009
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
Community of Astronomy Teaching Scholars (CATS) - National Implementation Program for Learner-Centered Astronomy Teaching
天文学教学学者社区 (CATS) - 以学习者为中心的天文学教学国家实施计划
  • 批准号:
    0715517
  • 财政年份:
    2007
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
SGER: Lifelong Learning and the Wireless Internet
SGER:终身学习和无线互联网
  • 批准号:
    0527380
  • 财政年份:
    2005
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Collaborative: The CONCAM Undergraduate Education Project
合作:CONCAM 本科教育项目
  • 批准号:
    0230920
  • 财政年份:
    2003
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
New Technologies for Teaching Introductory Astronomy
天文学入门教学新技术
  • 批准号:
    0205824
  • 财政年份:
    2002
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Quasar Research
类星体研究
  • 批准号:
    9803072
  • 财政年份:
    1998
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
Astronomy and Science Literacy
天文学和科学素养
  • 批准号:
    9814844
  • 财政年份:
    1998
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
The Creation of Networded Interactive Tools for Teachin Astronomy and Physics
天文学和物理教学网络交互工具的创建
  • 批准号:
    9816444
  • 财政年份:
    1998
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doctoral Dissertation Research: Predicting the location of hominin cave fossil sites with a machine learning approach
博士论文研究:利用机器学习方法预测古人类洞穴化石遗址的位置
  • 批准号:
    2341328
  • 财政年份:
    2024
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A machine learning approach to constraining ice volume and potential loss in High Mountain Asia
限制亚洲高山冰量和潜在损失的机器学习方法
  • 批准号:
    2890090
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Studentship
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
  • 批准号:
    2309367
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
PRIMES: A Biological and Socio-Environmental Approach to Machine Learning for Equitable and Proactive Cancer and Health Screening
PRIMES:机器学习的生物和社会环境方法,用于公平和主动的癌症和健康筛查
  • 批准号:
    2331502
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
  • 批准号:
    2311582
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
A Novel Approach to Semi-Supervised Statistical Machine Learning
半监督统计机器学习的新方法
  • 批准号:
    DP230101671
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Discovery Projects
The predicting model of responders in cognitive-behavioral therapy for panic disorder: A machine learning approach
恐慌症认知行为治疗中反应者的预测模型:机器学习方法
  • 批准号:
    23K02987
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of the Universal Descriptor of the Adsorbates Interaction on Heterogenous Catalysts by DOS Decomposition Approach and Machine Learning
通过 DOS 分解方法和机器学习创建异质催化剂上吸附物相互作用的通用描述符
  • 批准号:
    23K04890
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了