A Workshop on Stochastic Optimization, Tucson, Arizona; January 15-19, 1996

随机优化研讨会,亚利桑那州图森;

基本信息

  • 批准号:
    9423598
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-09-01 至 1996-08-31
  • 项目状态:
    已结题

项目摘要

Sen 9423598 The objective of this project is to hold a workshop on the subject of stochastic optimization and its applications. Stochastic optimization is a subset of the general subject area of mathematical optimization. However, unlike most optimization techniques in which the values of the parameters in the model are assumed to be known with certainty, in stochastic optimization, this is not the case. Stochastic optimization recognizes the presence of uncertainties in the values of model parameters. This is an area of optimization that attempts to capture the uncertainties that exist in modeling and solving real life problems. This workshop is aimed at providing a forum whereby researchers, industrial practitioners, and graduate students with interest in the subject area of stochastic optimization can meet to discuss current research directions and emphasis, share research results, and identify the challenges and direction for future research. Invitees to the workshop will consists of known researchers and industrial practitioners in the field. Graduate students will be invited to gain some insights on what the research needs and directions are. Stochastic Optimization has become one the fastest growing fields in mathematical programming. The growth is the results of the increasing recognition that uncertainty plays a critical role in many decision making and design environments. The various sectors in business, science, engineering, and the social sciences where stochastic optimization can be applied make the development of this subject area very critical. A better understanding of how to integrate uncertainties into decision making will significantly improve decision making processes and ultimately, the quality of life.
9423598本项目的目标是举办一次关于随机最优化及其应用的研讨会。随机优化是数学优化一般学科领域的一个子集。然而,与大多数优化技术不同的是,在随机优化中,假设模型中的参数值是确定的,情况并非如此。随机优化识别模型参数值中存在的不确定性。这是一个试图捕捉建模和解决实际问题中存在的不确定性的优化领域。这个研讨会的目的是提供一个论坛,让对随机优化学科领域感兴趣的研究人员、工业从业者和研究生可以会面,讨论当前的研究方向和重点,分享研究成果,并确定未来研究的挑战和方向。研讨会的受邀者将由该领域的知名研究人员和工业从业者组成。研究生将被邀请获得一些关于研究需要和方向的见解。随机优化已成为数学规划中发展最快的领域之一。这种增长是人们日益认识到不确定性在许多决策和设计环境中发挥关键作用的结果。商业、科学、工程和社会科学中可以应用随机优化的各个部门使得这一学科领域的发展非常关键。更好地理解如何将不确定性融入决策过程将显著改善决策过程,并最终提高生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suvrajeet Sen其他文献

Distribution-free algorithms for predictive stochastic programming in the presence of streaming data
在存在流数据的情况下进行预测随机规划的无分布算法
  • DOI:
    10.1007/s10589-023-00529-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuotao Diao;Suvrajeet Sen
  • 通讯作者:
    Suvrajeet Sen
Correction to: The ancestral Benders’ cutting-plane algorithm with multi-term disjunctions for mixed-integer recourse decisions in stochastic programming
  • DOI:
    10.1007/s10107-023-02039-y
  • 发表时间:
    2023-12-13
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Yunwei Qi;Suvrajeet Sen
  • 通讯作者:
    Suvrajeet Sen
Compromise policy for multi-stage stochastic linear programming: Variance and bias reduction
  • DOI:
    10.1016/j.cor.2022.106132
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jiajun Xu;Suvrajeet Sen
  • 通讯作者:
    Suvrajeet Sen
Duality Gaps in Stochastic Integer Programming
  • DOI:
    10.1023/a:1008314824754
  • 发表时间:
    2000-10-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Suvrajeet Sen;Julia L. Higle;John R. Birge
  • 通讯作者:
    John R. Birge
Enhancements of two-stage stochastic decomposition
  • DOI:
    10.1016/j.cor.2008.09.015
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suvrajeet Sen;Zhihong Zhou;Kai Huang
  • 通讯作者:
    Kai Huang

Suvrajeet Sen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suvrajeet Sen', 18)}}的其他基金

EAGER: Computational Operations Research Exchange (CORE)
EAGER:计算运筹研究交流中心(CORE)
  • 批准号:
    1822327
  • 财政年份:
    2018
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
EAGER: Renewables: Collaborative Proposal on Stochastic Unit Commitment with Topology Control Recourse for Networks with High Penetration of Distributed Renewable Resources
EAGER:可再生能源:分布式可再生资源高渗透率网络的随机单位承诺与拓扑控制资源的协作提案
  • 批准号:
    1548847
  • 财政年份:
    2015
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
A Task Force to Study Operations Research as a Catalyst for Engineering Grand Challenges
研究运筹学作为工程重大挑战催化剂的工作组
  • 批准号:
    1243182
  • 财政年份:
    2012
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Collaborative Research: Stochastic Multi-scale Optimization for Energy Resource Planning
合作研究:能源资源规划的随机多尺度优化
  • 批准号:
    0900070
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Workshop for Cyber-enabled Discovery and Innovation in Operations Research; Seattle, Washington; November 3-7, 2007
运筹学中网络驱动的发现和创新研讨会;
  • 批准号:
    0804945
  • 财政年份:
    2008
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Next Generation Software: A Simulation Platform for Experimentation and Evaluation of Distributed-Computing Systems (SPEED-CS)
下一代软件:用于分布式计算系统实验和评估的仿真平台 (SPEED-CS)
  • 批准号:
    9975050
  • 财政年份:
    1999
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
"ELITE: A New Undergraduate Program in Engineering"
“ELITE:新的工程学本科课程”
  • 批准号:
    9555057
  • 财政年份:
    1996
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Integrated Planning Under Uncertainty: Statistical Methods in Mathematical Programming
不确定性下的综合规划:数学规划中的统计方法
  • 批准号:
    9414680
  • 财政年份:
    1994
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Mathematical Programming Under Uncertainty: Risk and Recourse Revisited
不确定性下的数学规划:重新审视风险和追索权
  • 批准号:
    9114352
  • 财政年份:
    1991
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
  • 批准号:
    2232588
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Exploiting Smooth Substructure in Non-Smooth Stochastic Optimization
在非光滑随机优化中利用光滑子结构
  • 批准号:
    2306322
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Co-Design of Neural Operators and Stochastic Optimization Algorithms for Learning Surrogates for PDE-Constrained Optimization Under Uncertainty
不确定性下偏微分方程约束优化学习代理的神经算子和随机优化算法的协同设计
  • 批准号:
    2324643
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
  • 批准号:
    2306023
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
NSF-BSF: AF: Small: Parameter-Free Stochastic Optimization via Trajectory Cues
NSF-BSF:AF:小:通过轨迹线索进行无参数随机优化
  • 批准号:
    2239527
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229344
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了