Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment

合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法

基本信息

  • 批准号:
    2229345
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The operational landscape of electric power systems is currently experiencing a profound transformation driven by various factors, including the integration of renewable energy sources, the need for a cleaner energy economy, and the urgency to address the climate crisis. This project aims to lay the mathematical groundwork necessary to harness the full potential of deep machine learning approaches in enhancing power system operations, particularly in relation to renewable energy, such as wind and solar generation. The research will develop a new suite of distributed optimization tools that will empower large-scale power system operations to manage uncertainty while incorporating renewable energy resources effectively. The new algorithms will potentially transform operational practices within the power system. At the same time, the results will increase public awareness and understanding among stakeholders, regulators, policymakers, and market participants. The successful completion of this project will enable power system operators to adopt cutting-edge algorithms that significantly enhance their operational practices with renewable generation. The project will provide training and outreach opportunities to students from both institutions, particularly those from underrepresented groups in STEM. The project aims to develop and validate deep-learning-enabled distributed stochastic algorithms. These algorithms will solve large-scale, stochastic security-constrained unit commitment problems within power systems. Specifically, the project will focus on the following objectives: (i) the design of a holistic, three-stage, deep neural network-based machine learning approach; (ii) the solution strategies based on the hybrid distributed parameter system control theory; and (iii) extensive validations of the proposed algorithms using large-scale real-world power system datasets. The research will advance the field by introducing innovative techniques to address the challenges associated with power system operation under uncertainty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力系统的运营格局目前正经历着由各种因素驱动的深刻变革,包括可再生能源的整合,对清洁能源经济的需求以及应对气候危机的紧迫性。该项目旨在为充分利用深度机器学习方法在增强电力系统运营方面的潜力奠定必要的数学基础,特别是在风能和太阳能发电等可再生能源方面。该研究将开发一套新的分布式优化工具,使大规模电力系统运营能够管理不确定性,同时有效地整合可再生能源。新算法将潜在地改变电力系统内的操作实践。与此同时,这些成果将提高公众意识,并增进利益攸关方、监管机构、政策制定者和市场参与者的理解。该项目的成功完成将使电力系统运营商能够采用先进的算法,大大提高其可再生能源发电的运营实践。该项目将为来自这两个机构的学生,特别是来自STEM代表性不足群体的学生提供培训和推广机会。该项目旨在开发和验证支持深度学习的分布式随机算法。这些算法将解决大规模的,随机的安全约束下的机组组合问题的电力系统。具体而言,该项目将专注于以下目标:(i)设计一种整体的,三阶段的,基于深度神经网络的机器学习方法;(ii)基于混合分布参数系统控制理论的解决方案策略;以及(iii)使用大规模真实世界电力系统数据集对所提出的算法进行广泛验证。该研究将通过引入创新技术来解决与电力系统在不确定性下运行相关的挑战,从而推动该领域的发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiwei Hu其他文献

Chemical Signatures of Seasonally Unique Anthropogenic Influences on Organic Aerosol Composition in the Central Amazon.
亚马逊中部有机气溶胶成分季节性独特人为影响的化学特征。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Emily B. Franklin;L. Yee;R. Wernis;G. Isaacman;N. Kreisberg;R. Weber;Haofei Zhang;B. Palm;Weiwei Hu;P. Campuzano‐Jost;D. Day;A. Manzi;P. Artaxo;Rodrigo A. F. Souza;J. Jimenez;S. Martin;A. Goldstein
  • 通讯作者:
    A. Goldstein
Black Carbon Involved Photochemistry Enhances the Formation of Sulfate in the Ambient Atmosphere: Evidence From In Situ Individual Particle Investigation
涉及光化学的黑碳增强了环境大气中硫酸盐的形成:来自原位单个粒子研究的证据
  • DOI:
    10.1029/2021jd035226
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guohua Zhang;Yuzhen Fu;Xiaocong Peng;Wei Sun;Zongbo Shi;Wei Song;Weiwei Hu;Yong Li;Xiufeng Lian;Lei Li;Mingjin Tang;Xun Wang;Xinhui Bi
  • 通讯作者:
    Xinhui Bi
The decay of airborne bacteria and fungi in a constant temperature and humidity test chamber
恒温恒湿试验箱中空气细菌和真菌的腐烂
  • DOI:
    10.1016/j.envint.2021.106816
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Caihong Xu;Hui Chen;Zhe Liu;Guodong Sui;Dan Li;Haidong Kan;Zhuohui Zhao;Weiwei Hu;Jie Chen
  • 通讯作者:
    Jie Chen
BDNF-overexpressing human umbilical cord mesenchymal stem cell-derived motor neurons improve motor function and prolong survival in amyotrophic lateral sclerosis mice
BDNF 过表达人脐带间充质干细胞来源的运动神经元可改善肌萎缩侧索硬化症小鼠的运动功能并延长生存期
  • DOI:
    10.1080/01616412.2020.1834775
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Jie Wang;Weiwei Hu;Zehua Feng;Meijiang Feng
  • 通讯作者:
    Meijiang Feng
Photopolymerisable liquid crystals for additive manufacturing
用于增材制造的光聚合液晶
  • DOI:
    10.1016/j.addma.2022.102861
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Guang Hu;Biao Zhang;Stephen M Kelly;Jingjing Cui;Kailong Zhang;Weiwei Hu;D;an Min;Shijie Ding;Wei Huang
  • 通讯作者:
    Wei Huang

Weiwei Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiwei Hu', 18)}}的其他基金

Nonlinear Control and Observer Designs for Flow-Transport Systems
流体传输系统的非线性控制和观察器设计
  • 批准号:
    2205117
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Methods for Optimal Transport via Fluid Flows
合作研究:流体流动优化传输的计算方法
  • 批准号:
    2111486
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Control and Optimization of Semi-Dissipative Systems
半耗散系统的控制和优化
  • 批准号:
    2005696
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Control and Optimization of Semi-Dissipative Systems
半耗散系统的控制和优化
  • 批准号:
    1813570
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229011
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229012
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229074
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229073
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
  • 批准号:
    2229075
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229344
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
  • 批准号:
    2229108
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
  • 批准号:
    2229408
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
  • 批准号:
    2229409
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
  • 批准号:
    2229109
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了