GOALI: Nonlinear Identification and Control Strategies
GOALI:非线性识别和控制策略
基本信息
- 批准号:9424094
- 负责人:
- 金额:$ 21.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-03-15 至 1998-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract - Seborg GOALI Model-based process control strategies utilizing nonlinear dynamic models can provide improvements over conventional PID and control strategies based on linear dynamic models. A factor for successful application of nonlinear control systems is the availability of a reasonably accurate, dynamic model. For some industrial control applications, physical models can be developed from first principles such as unsteady-state mass and energy balances. However, it may not be feasible to use a physical model as part of the on-line control calculations due to model complexity, unknown model parameters, or the lack of key measurements. In many applications, accurate physical models are not available for a variety of reasons, which include process complexity, lack of process understanding, limited measurements, and the time and effort required to develop them. For these situations, an attractive alternative is to develop an empirical nonlinear model which is consistent with available a priori physical information using nonlinear identification techniques. In this joint academic-industrial research project, process control researchers at the University of California at Santa Barbara and at DuPont will address a number of issues in nonlinear identification which limit the effectiveness of existing methods and their widespread application. These issues include: (1) selection of the input sequence to ensure appropriate process excitation; (2) incorporation of available a priori process knowledge; (3) selection of key design parameters such as sampling period, amount of data to be acquired, model orders and model time delay; (4) characterization of model uncertainty; and (5) on-line model updating and adaptation. The identification methods resulting from the research will be evaluated in a number of simulation and experimental studies, including industrial applications. A case study will provide a comparison of alternative identification techniques based, in part, on whether they can be used to develop effective model-based control systems.
摘要 - 利用非线性动态模型的基于 Seborg GOALI 模型的过程控制策略可以对基于线性动态模型的传统 PID 和控制策略进行改进。 非线性控制系统成功应用的一个因素是具有相当准确的动态模型。 对于某些工业控制应用,可以根据非稳态质量和能量平衡等第一原理开发物理模型。 然而,由于模型复杂、模型参数未知或缺乏关键测量,使用物理模型作为在线控制计算的一部分可能不可行。 在许多应用中,由于多种原因而无法获得准确的物理模型,其中包括工艺复杂性、缺乏工艺理解、测量有限以及开发它们所需的时间和精力。 对于这些情况,一个有吸引力的替代方案是开发一个经验非线性模型,该模型与使用非线性识别技术的可用先验物理信息一致。 在这个学术-工业联合研究项目中,加州大学圣塔芭芭拉分校和杜邦公司的过程控制研究人员将解决非线性识别中的许多问题,这些问题限制了现有方法的有效性及其广泛应用。 这些问题包括:(1)选择输入序列以确保适当的过程激励; (2) 结合现有的先验过程知识; (3) 采样周期、采集数据量、模型阶数、模型时延等关键设计参数的选择; (4) 模型不确定性的表征; (5)在线模型更新和适配。 研究得出的识别方法将在许多模拟和实验研究中进行评估,包括工业应用。 案例研究将提供对替代识别技术的比较,部分基于它们是否可以用于开发有效的基于模型的控制系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dale Seborg其他文献
Dale Seborg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dale Seborg', 18)}}的其他基金
Advanced Strategies for Process Control and Manufacturing
过程控制和制造的先进策略
- 批准号:
8605233 - 财政年份:1986
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
Advanced Strategies For Process Control
先进的过程控制策略
- 批准号:
8200274 - 财政年份:1982
- 资助金额:
$ 21.71万 - 项目类别:
Continuing grant
Conference on Chemical Process Control - Ii, at Sea Island, Georgia, January 18-23, 1981
化学过程控制会议 - II,1981 年 1 月 18-23 日,佐治亚州海岛
- 批准号:
8011196 - 财政年份:1980
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
Acquistion of a Computer Controlled Distillation Column
购置计算机控制蒸馏塔
- 批准号:
7811097 - 财政年份:1978
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
相似海外基金
Characterising Neurological Disorders with Nonlinear System Identification and Network Analysis
通过非线性系统识别和网络分析来表征神经系统疾病
- 批准号:
EP/X020193/1 - 财政年份:2023
- 资助金额:
$ 21.71万 - 项目类别:
Research Grant
Development of an input identification based on nonlinear control for seismic waves inducing critical responses, with its experimental validation
开发基于非线性控制的地震波诱发临界响应的输入识别方法并进行实验验证
- 批准号:
22K18838 - 财政年份:2022
- 资助金额:
$ 21.71万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Identification, estimation and inference of nonlinear dynamic causal effects in macroeconometrics
宏观计量经济学中非线性动态因果效应的识别、估计和推断
- 批准号:
RGPIN-2021-02663 - 财政年份:2022
- 资助金额:
$ 21.71万 - 项目类别:
Discovery Grants Program - Individual
Practical Methods for the Identification of Nonlinear Systems
非线性系统辨识的实用方法
- 批准号:
RGPIN-2020-04590 - 财政年份:2022
- 资助金额:
$ 21.71万 - 项目类别:
Discovery Grants Program - Individual
Practical Methods for the Identification of Nonlinear Systems
非线性系统辨识的实用方法
- 批准号:
RGPIN-2020-04590 - 财政年份:2021
- 资助金额:
$ 21.71万 - 项目类别:
Discovery Grants Program - Individual
Identification, estimation and inference of nonlinear dynamic causal effects in macroeconometrics
宏观计量经济学中非线性动态因果效应的识别、估计和推断
- 批准号:
RGPIN-2021-02663 - 财政年份:2021
- 资助金额:
$ 21.71万 - 项目类别:
Discovery Grants Program - Individual
Harnessing nonlinear electrokinetic effects for microparticle identification and separation in microfluidic devices
利用非线性电动效应进行微流体装置中的微粒识别和分离
- 批准号:
2127592 - 财政年份:2021
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
Nonlinear system identification for large-scale and complicated systems using piecewise nonlinear models
使用分段非线性模型对大规模复杂系统进行非线性系统辨识
- 批准号:
21K12051 - 财政年份:2021
- 资助金额:
$ 21.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Practical Methods for the Identification of Nonlinear Systems
非线性系统辨识的实用方法
- 批准号:
RGPIN-2020-04590 - 财政年份:2020
- 资助金额:
$ 21.71万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Dynamical System Identification for Nonlinear Model Predictive Control applied to Renewable Energy and Energy Efficiency
用于可再生能源和能源效率的非线性模型预测控制动态系统辨识的深度学习
- 批准号:
555943-2020 - 财政年份:2020
- 资助金额:
$ 21.71万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's