Postdoc: Parallel Multizone Adaptive Scheme for Multiphase Systems with Free and Moving Boundaries

博士后:具有自由和移动边界的多相系统的并行多区域自适应方案

基本信息

  • 批准号:
    9503988
  • 负责人:
  • 金额:
    $ 4.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-06-01 至 1997-11-30
  • 项目状态:
    已结题

项目摘要

9503988 Prasad The object of the proposed research is to develop a parallelized multizone adaptive scheme for accurate and efficient simulations of materials processes of industrial importance. The final software will be able to simulate three-dimensional transient processes involving diffusion and convection of heat, mass, and species, and radiation heat transfer together with melting/solidification, flows induced by buoyancy and capillary forces, and effects of electrical and magnetic fields. The use of a generalized governing equation will allow consideration of many different materials with various phases in a single computational domain. The numerical scheme will employ (a) the multizone adaptive grid generation (MAGG) technique for the discretization of physical domains of arbitrary shape, and (b) the curvilinear finite-volume(CFV) approach for the discretization of the govening partial differential equations and development of the finite difference equations. An efficient parallel algorithm suitable for multiphase systems will be developed based on the massively-parallel distributed-memory MIMD techniques and will take advantage of the physics of the problem to develop a domain-decomposition strategy. Load balance, communication, and migration of elements will be given special attention in the development. The immediate implementation of this model will be made to the CZ and CCZ growth of silicon single crystals (a project sponsored by NSF and Ferrofluidics Corporation) and one-step in-situ synthesis and high pressure MLEK growth of indium phosphide crystals (an AFOSR project). The proposed parallel computer model will be able to simulate many kinds of complex materials processes involving free and moving boundaries that are not possible by the present techniques.
所提出的研究的目标是开发一种并行的多区域自适应方案,用于精确和有效地模拟工业重要材料过程。最终的软件将能够模拟三维瞬态过程,包括热量、质量和物质的扩散和对流,辐射传热以及熔化/凝固,浮力和毛细力引起的流动,以及电场和磁场的影响。广义控制方程的使用将允许在单个计算域中考虑具有不同相的许多不同材料。数值方案将采用(a)多区域自适应网格生成(MAGG)技术对任意形状的物理域进行离散化,以及(b)曲线有限体积(CFV)方法对控制偏微分方程进行离散化,并开发有限差分方程。基于大规模并行分布式存储MIMD技术,将开发一种适用于多相系统的高效并行算法,并利用问题的物理特性来开发一种域分解策略。在开发过程中,将特别关注负载平衡、通信和元素迁移。该模型将立即应用于硅单晶的CZ和CCZ生长(NSF和Ferrofluidics公司资助的项目)和磷化铟晶体的一步原位合成和高压MLEK生长(AFOSR项目)。所提出的并行计算机模型将能够模拟涉及自由和移动边界的多种复杂材料过程,这是目前技术所不可能实现的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vishwanath Prasad其他文献

Vishwanath Prasad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vishwanath Prasad', 18)}}的其他基金

Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
EAGER: Experimental Methods and Measurements of Anomalous Properties of Supercritical Fluids and their Mixtures
EAGER:超临界流体及其混合物反常性质的实验方法和测量
  • 批准号:
    2231393
  • 财政年份:
    2022
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
Modernization of Multi-Scale Characterization, Analysis, and Synthesis Facility for Materials and Devices
材料和器件多尺度表征、分析和合成设施的现代化
  • 批准号:
    0963509
  • 财政年份:
    2010
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
The Biomedical Engineering Partnership Program at FIU: Fostering Technology Entrepreneurship, Commercialization, and Clinical Implementation
佛罗里达国际大学生物医学工程合作伙伴计划:促进技术创业、商业化和临床实施
  • 批准号:
    0227869
  • 财政年份:
    2003
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
Travel Support for Young Scientists to Participate in the Fifth ISHMT-ASME Heat and Mass Transfer Conference (India) and Expand Global Research Perspectives
为年轻科学家参加第五届 ISHMT-ASME 传热传质会议(印度)并拓展全球研究视野提供差旅支持
  • 批准号:
    0109394
  • 财政年份:
    2001
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
Group Travel to Participate in the Fourth ISHMT-ASME Heat and Mass Transfer Conference and Expand Research Interaction, January 2000, Pune, India
团体旅行参加第四届 ISHMT-ASME 传热传质会议并扩大研究互动,2000 年 1 月,印度浦那
  • 批准号:
    9906952
  • 财政年份:
    1999
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
Support for 3rd International Workshop on Modeling in Crystal Growth at Stony Brook: Expanding the Research Base and Student Participation
支持石溪第三届晶体生长建模国际研讨会:扩大研究基础和学生参与
  • 批准号:
    9910538
  • 财政年份:
    1999
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
Workshop on Thermal Aspects of Manufacturing and Materials Processing: Emerging Technologies and Research Issues
制造和材料加工热学问题研讨会:新兴技术和研究问题
  • 批准号:
    9807074
  • 财政年份:
    1998
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
Continuous Czochralski Growth of Silicon Single Crystals
硅单晶的连续直拉法生长
  • 批准号:
    9414606
  • 财政年份:
    1995
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Continuing Grant
Molecular Dynamics Simulation of Thin Film Depositions on Plane Substrates and in Vias
平面基板和通孔中薄膜沉积的分子动力学模拟
  • 批准号:
    9303007
  • 财政年份:
    1993
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Continuing Grant

相似国自然基金

强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
  • 批准号:
    11805229
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
NIRG: Evaluation of interventions with rare events: methods for parallel cluster randomised trials and stepped-wedge cluster randomised trials
NIRG:罕见事件干预措施的评估:平行整群随机试验和阶梯楔形整群随机试验的方法
  • 批准号:
    MR/X029492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Research Grant
Cerebellum-inspired parallel deep learning
受小脑启发的并行深度学习
  • 批准号:
    EP/X029336/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Research Grant
GEO OSE Track 2: Enhancing usability of the Parallel Ice Sheet Model (PISM) to accelerate innovative sea-level research
GEO OSE 轨道 2:增强平行冰盖模型 (PISM) 的可用性,以加速创新的海平面研究
  • 批准号:
    2324718
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
CAREER : Towards Exascale Performance of Parallel Applications
职业:迈向并行应用的百亿亿级性能
  • 批准号:
    2338077
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Continuing Grant
Intelligently Scalable Multiple Light Sources for Parallel Coherent LiDAR
用于并行相干激光雷达的智能可扩展多光源
  • 批准号:
    23K22760
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Robust and intelligent parallel-connected GaN power devices
稳健且智能的并联 GaN 功率器件
  • 批准号:
    24K17265
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Divergence and parallel evolution of boldness in guppies
孔雀鱼胆量的分歧与平行进化
  • 批准号:
    NE/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Research Grant
MFB: Massively parallel identification of translation regulatory sequences in human and viral mRNAs
MFB:大规模并行鉴定人类和病毒 mRNA 中的翻译调控序列
  • 批准号:
    2330451
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
  • 批准号:
    2330054
  • 财政年份:
    2024
  • 资助金额:
    $ 4.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了