Vision Algorithms for Analysis of Tissue and Fluid Deformations from Medical Images

用于分析医学图像中的组织和流体变形的视觉算法

基本信息

  • 批准号:
    9505370
  • 负责人:
  • 金额:
    $ 8.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-15 至 1996-06-30
  • 项目状态:
    已结题

项目摘要

The aim of this research is to develop vision algorithms for analysis of non-rigid motion from medical imagery. We will continue our algorithm development in snake tracking and image velocity field computation for assessment of tissue deformations and analysis of fluid flow from MRI and X-ray imagery, and extend the techniques to 3D. MRI is unique in its ability to non-invasively and selectively alter tissue magnetization, and create tagged patterns within deforming tissue such as the heart muscle. The resulting pattern defines a time-varying curvilinear coordinate system on the underlying tissue, allowing for precise and quantitative measurement of tissue motion and deformation from a sequence of images. The motion of these visible tag lines is tracked with Dynamic Programming (DP) B-spline snakes, and interacting B-spline deformable grids. Warp algorithms have been developed which continuously map two tissue regions in the plane such that two embedded grids of curves are brought into registration. For fluid flow field analysis, a scalar function formulation for optical flow has been developed. The novel aspect of the new optical flow framework is that it automatically enforces incompressibility on the resulting velocity field. Applications of the techniques to various experimental conditions are planned.
本研究的目的是开发用于分析医学图像中非刚性运动的视觉算法。我们将继续在蛇跟踪和图像速度场计算方面的算法开发,用于评估组织变形和分析MRI和x射线图像中的流体流动,并将技术扩展到3D。MRI的独特之处在于它能够非侵入性和选择性地改变组织磁化,并在变形组织(如心肌)内创建标记模式。由此产生的图案在底层组织上定义了一个随时间变化的曲线坐标系,允许从一系列图像中精确和定量地测量组织运动和变形。通过动态规划(DP) b样条蛇和相互作用的b样条可变形网格来跟踪这些可见标记线的运动。已经开发了连续映射平面上两个组织区域的Warp算法,使得两个嵌入的曲线网格被引入配准。为了分析流体流场,提出了光流的标量函数公式。新的光流框架的新颖之处在于它自动地对产生的速度场施加不可压缩性。计划了该技术在各种实验条件下的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Amini其他文献

Overcoming Barriers in Neurosurgical Education: A Novel Approach to Practical Ventriculostomy Simulation
克服神经外科教育中的障碍:实用脑室造口术模拟的新方法
  • DOI:
    10.1227/ons.0000000000000272
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Amir Amini;Yannic Zeller;K. Stein;K. Hartmann;T. Wartmann;C. Wex;Elyas Mirzaee;V. M. Swiatek;S. Saalfeld;A. Haghikia;C. A. Dumitru;I. Sandalcioglu;B. Neyazi
  • 通讯作者:
    B. Neyazi
The Relation between Students’ Mental Health and Tendency toward Risky Behavior in Pishva, Iran
伊朗皮什瓦学生心理健康与危险行为倾向之间的关系
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fahimeh Mirzakhani;Zahra Ameri;N. Khanjani;Amir Amini;Amir Reza Nabipour
  • 通讯作者:
    Amir Reza Nabipour
Secure Sampled-Data Observer-Based Control for Wind Turbine Oscillation Under Cyber Attacks
基于采样数据观察器的网络攻击下风力涡轮机振荡的安全控制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Amir Amini;Mohsen Ghafouri;Arash Mohammadi;Ming Hou;A. Asif;K. Plataniotis
  • 通讯作者:
    K. Plataniotis
Combined effect of gilsonite, sasobit, and soft binder on performance characterization of high RAP binder
  • DOI:
    10.1016/j.conbuildmat.2024.138714
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Amir Amini;Hadiseh Parvizi
  • 通讯作者:
    Hadiseh Parvizi
Unveiling rupture risk and clinical outcomes in midline aneurysms: A matched cohort analysis investigating the impact of localization within the anterior or posterior circulation
揭示中线动脉瘤的破裂风险和临床结果:一项匹配队列分析,研究前循环或后循环内定位的影响
  • DOI:
    10.1007/s10143-024-02310-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    V. M. Swiatek;Amir Amini;Celina E. Sandalcioglu Ortuño;L. Spitz;K. Hartmann;Ali Rashidi;K. Stein;Sylvia Saalfeld;I. E. Sandalcioglu;B. Neyazi
  • 通讯作者:
    B. Neyazi

Amir Amini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Amini', 18)}}的其他基金

Analysis of Peripheral MR Velocity Images for Direct Quantification of Pulsatile Pressures
分析外周 MR 速度图像以直接量化脉动压力
  • 批准号:
    0730467
  • 财政年份:
    2008
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Standard Grant
Vision Algorithms for Analysis of Tissue and Fluid Deformations from Medical Images
用于分析医学图像中的组织和流体变形的视觉算法
  • 批准号:
    9796078
  • 财政年份:
    1996
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Continuing Grant
Vision Algorithms for Analysis of Tissue and Fluid Deformations from Medical Images
用于分析医学图像中的组织和流体变形的视觉算法
  • 批准号:
    9796207
  • 财政年份:
    1996
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Continuing Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Continuing Grant
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
  • 批准号:
    EP/X035883/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Research Grant
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
  • 批准号:
    2323533
  • 财政年份:
    2023
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Standard Grant
Design and Analysis of Algorithms for Structured Optimization
结构化优化算法的设计与分析
  • 批准号:
    2307328
  • 财政年份:
    2023
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Standard Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
  • 批准号:
    2239046
  • 财政年份:
    2023
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
  • 财政年份:
    2023
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 8.42万
  • 项目类别:
    Standard Grant
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
  • 批准号:
    10805177
  • 财政年份:
    2023
  • 资助金额:
    $ 8.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了