CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms

职业:科学机器学习的高斯过程:理论分析和计算算法

基本信息

  • 批准号:
    2337678
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

Machine learning and artificial intelligence are increasingly changing our lives at every scale, from our personal day-to-day activities to large scale shifts in our society, economy, and geopolitics. These technologies have also profoundly transformed sciences with new ideas and algorithms being developed at an immense speed. However, our mathematical understanding of these algorithms is still far beyond their practical development and widespread adoption. Put simply, in many cases we do not know how or why machine learning algorithms work so well, which in turn limits our ability to safely deploy them in safety critical engineering and scientific scenarios. The goal of this project is to develop mathematical formalism and understanding of problems at the intersection of machine learning and science (i.e., scientific machine learning) using rigorous mathematics, leading to novel algorithms and computational methodologies that are interpretable, supported by rigorous theory, and aware of uncertainties.The project is focused on the development of novel Gaussian Process (GP) based computational frameworks for scientific machine learning that are provably well-posed, robust, and stable, thereby meeting the high standards of scientific computing. The developed methodologies will be capable of rigorous uncertainty quantification and inherit the desirable properties of machine learning algorithms such as flexibility, generalizability, and applicability in high-dimensions. The efforts of the project are directed in three primary directions: (1) GPs for solving nonlinear, high-dimensional and parametric PDEs; (2) GPs for operator learning, emulation, and physics discovery; and (3) GPs for high-dimensional sampling, inference, and generative modeling. Each research direction focuses on the development of algorithms, foundational theory, and concrete applications in engineering and science. The project also contains an extensive education plan focused on machine learning and data science education from high-school through graduate levels with extensive opportunities for training of graduate and undergraduate students as well as local and international outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能正在越来越多地改变我们的生活,从我们个人的日常活动到我们社会、经济和地缘政治的大规模转变。这些技术也深刻地改变了科学,新的想法和算法正在以极快的速度发展。然而,我们对这些算法的数学理解仍然远远超出了它们的实际发展和广泛采用。简而言之,在许多情况下,我们不知道机器学习算法如何或为什么工作得如此之好,这反过来限制了我们在安全关键工程和科学场景中安全部署它们的能力。该项目的目标是发展数学形式主义和对机器学习和科学交叉点问题的理解(即,科学机器学习),导致新的算法和计算方法是可解释的,由严格的理论支持,并意识到的不确定性.该项目的重点是开发新的高斯过程(GP)为基础的计算框架的科学机器学习是可证明的适定性,鲁棒性,稳定,从而满足科学计算的高标准.所开发的方法将能够进行严格的不确定性量化,并继承机器学习算法的理想特性,如灵活性,泛化性和高维的适用性。该项目的努力主要集中在三个方向:(1)用于解决非线性,高维和参数偏微分方程的GP;(2)用于算子学习,仿真和物理发现的GP;以及(3)用于高维采样,推理和生成建模的GP。每个研究方向都侧重于算法,基础理论以及工程和科学中的具体应用的发展。该项目还包含一个广泛的教育计划,重点关注从高中到研究生的机器学习和数据科学教育,为研究生和本科生提供广泛的培训机会,以及本地和国际推广。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bamdad Hosseini其他文献

Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
非线性和参数偏微分方程的核/GP 方法的误差分析
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pau Batlle;Yifan Chen;Bamdad Hosseini;H. Owhadi;A. Stuart
  • 通讯作者:
    A. Stuart
Well-posed Bayesian Inverse Problems: beyond Gaussian priors
适定贝叶斯逆问题:超越高斯先验
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bamdad Hosseini;N. Nigam
  • 通讯作者:
    N. Nigam
A Metropolis-Hastings algorithm for posterior measures with self-decomposable priors
具有可自分解先验的后验测量的 Metropolis-Hastings 算法
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bamdad Hosseini
  • 通讯作者:
    Bamdad Hosseini
Kernel Regression Method for Stochastic Real-time State Estimation in Power Grid
电网随机实时状态估计的核回归方法
Two Metropolis-Hastings Algorithms for Posterior Measures with Non-Gaussian Priors in Infinite Dimensions
无限维非高斯先验后验测度的两种 Metropolis-Hastings 算法

Bamdad Hosseini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bamdad Hosseini', 18)}}的其他基金

Conference: NSF Computational Mathematics PI Meeting 2024
会议:2024 年 NSF 计算数学 PI 会议
  • 批准号:
    2417818
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Machine Learning for Bayesian Inverse Problems
贝叶斯逆问题的机器学习
  • 批准号:
    2208535
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

强磁场下基于Hylleraas-Gaussian基的双电子双原子分子的谱结构
  • 批准号:
    11504315
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E-MSS: Sparsely Activated Bayesian Neural Networks from Deep Gaussian Processes
CDS
  • 批准号:
    2312173
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Non-Gaussian Multivariate Processes for Renewable Energy and Finance
可再生能源和金融的非高斯多元过程
  • 批准号:
    2310487
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
  • 批准号:
    2311306
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210840
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
  • 批准号:
    RGPIN-2017-05657
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Limit theorems for zeroes of Gaussian processes.
高斯过程零点的极限定理。
  • 批准号:
    EP/V002449/1
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Applications of certain non-Gaussian processes in financial mathematics
某些非高斯过程在金融数学中的应用
  • 批准号:
    RGPIN-2019-05906
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Inference Methods for Stationary Martingales and Other Non-Gaussian Processes
稳态鞅和其他非高斯过程的推理方法
  • 批准号:
    RGPIN-2017-05657
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了