Cryogenic Helium Turbulence Research

低温氦湍流研究

基本信息

  • 批准号:
    9529609
  • 负责人:
  • 金额:
    $ 500万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-11-01 至 2002-10-31
  • 项目状态:
    已结题

项目摘要

9529609 Donnelly Turbulence is undoubtedly the most outstanding unsolved problem of classical physics. From a practical turbulence is the 'limiting factor' in the design and operation of various energy systems in aeronautical, chemical and mechanical engineering. It is a central theme in geophysics, meteorology, and other areas which strongly impact human life. For these reasons, an enhanced ability to understand and predict turbulent flows will have a large payoff. This project focuses on fundamental turbulence research using a non-traditional fluid: cryogenic helium near its critical point of 5 K. Helium is theoretically capable of providing the highest Reynolds and Rayleigh number conditions for controlled turbulence experiments in a laboratory on earth. However, the working temperature range of 4-5 K presents challenges to existing techniques and instrumentation for turbulence measurements. In addition, to reach the limits of ultra-high Reynolds and Rayleigh numbers requires major cryogenic facilities which are currently found only at high energy physics projects requiring large volumes of cryogenic fluids for cooling superconducting magnets or other apparatus. This project brings together for the first time a team to meet these challenges. The team is composed of faculty at the University of Oregon (Professor Russell J. Donnelly) and Yale University (Professor Katapali R. Sreenivasan), together with co-workers (Michael S. McAshan and James R. Maddocks) who will conduct on-site research at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) Cryogenic Facility (Dr. Satoshi Ozaki, Project Director). The members of the team include world leaders in helium turbulence, fluid hydrodynamics and cryogenic technology. The project goals are to develop instrumentation for turbulence measurements using cryogenic helium, to use this instrumentation for fundamental turbulence measurements, and to construct a major convection chamber at RHIC. Successful completion of this project will place the U. S. in a world leadership position in cryogenic helium turbulence research and lay the foundation for future research in ultra high Reynolds and Rayleigh number phenomena. %%% Turbulence is undoubtedly the most outstanding unsolved problem of classical physics. From a practical turbulence is the 'limiting factor' in the design and operation of various energy systems in aeronautical, chemical and mechanical engineering. It is a central theme in geophysics, meteorology, and other areas which strongly impact human life. For these reasons, an enhanced ability to understand and predict turbulent flows will have a large payoff. This project focuses on fundamental turbulence research using a non-traditional fluid: cryogenic helium near its critical point of 5 K. Helium is theoretically capable of providing the highest Reynolds and Rayleigh number conditions for controlled turbulence experiments in a laboratory on earth. However, the working temperature range of 4-5 K presents challenges to existing techniques and instrumentation for turbulence measurements. In addition, to reach the limits of ultra-high Reynolds and Rayleigh numbers requires major cryogenic facilities which are currently found only at high energy physics projects requiring large volumes of cryogenic fluids for cooling superconducting magnets or other apparatus. This project brings together for the first time a team to meet these challenges. The team is composed of faculty at the University of Oregon (Professor Russell J. Donnelly) and Yale University (Professor Katapali R. Sreenivasan), together with co-workers (Michael S. McAshan and James R. Maddocks) who will conduct on-site research at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) Cryogenic Facility (Dr. Satoshi Ozaki, Project Director). The members of the team include world leaders in helium turbulence, fluid hydrodynamics and cryogenic technology. The project goals are to develop instrumentation for turbulence measurements using cryogenic helium, to use this instrumentation for fundamental turbulence measurements, and to construct a major convection chamber at RHIC. Successful completion of this project will place the U. S. in a world leadership position in cryogenic helium turbulence research and lay the foundation for future research in ultra high Reynolds and Rayleigh number phenomena.
[9529609]湍流无疑是经典物理学中最突出的未解决问题。从实际来看,湍流是航空、化学和机械工程中各种能源系统设计和运行的“限制因素”。它是地球物理学、气象学和其他影响人类生活的领域的中心主题。由于这些原因,增强理解和预测湍流的能力将有很大的回报。本项目着重于基础湍流研究,使用一种非传统的流体:低温氦在其5 K的临界点附近。氦气理论上能够为地球实验室的可控湍流实验提供最高的雷诺数和瑞利数条件。然而,4-5 K的工作温度范围对现有的湍流测量技术和仪器提出了挑战。此外,要达到超高雷诺数和瑞利数的极限,需要大型低温设施,而目前只有在需要大量低温流体来冷却超导磁体或其他设备的高能物理项目中才能找到。该项目首次汇集了一个团队来应对这些挑战。该团队由俄勒冈大学(Russell J. Donnelly教授)和耶鲁大学(Katapali R. Sreenivasan教授)的教师组成,以及同事(Michael S. McAshan和James R. Maddocks),他们将在布鲁克海文国家实验室相对论重离子对撞机(RHIC)低温设备(Satoshi Ozaki博士,项目主任)进行现场研究。该团队的成员包括氦湍流、流体力学和低温技术方面的世界领先者。该项目的目标是开发使用低温氦进行湍流测量的仪器,使用该仪器进行基本的湍流测量,并在RHIC建造一个主要的对流室。该项目的成功完成将使美国在低温氦湍流研究方面处于世界领先地位,并为未来超高雷诺数和瑞利数现象的研究奠定基础。湍流无疑是经典物理学中最突出的未解决问题。从实际来看,湍流是航空、化学和机械工程中各种能源系统设计和运行的“限制因素”。它是地球物理学、气象学和其他影响人类生活的领域的中心主题。由于这些原因,增强理解和预测湍流的能力将有很大的回报。本项目着重于基础湍流研究,使用一种非传统的流体:低温氦在其5 K的临界点附近。氦气理论上能够为地球实验室的可控湍流实验提供最高的雷诺数和瑞利数条件。然而,4-5 K的工作温度范围对现有的湍流测量技术和仪器提出了挑战。此外,要达到超高雷诺数和瑞利数的极限,需要大型低温设施,而目前只有在需要大量低温流体来冷却超导磁体或其他设备的高能物理项目中才能找到。该项目首次汇集了一个团队来应对这些挑战。该团队由俄勒冈大学(Russell J. Donnelly教授)和耶鲁大学(Katapali R. Sreenivasan教授)的教师组成,以及同事(Michael S. McAshan和James R. Maddocks),他们将在布鲁克海文国家实验室相对论重离子对撞机(RHIC)低温设备(Satoshi Ozaki博士,项目主任)进行现场研究。该团队的成员包括氦湍流、流体力学和低温技术方面的世界领先者。该项目的目标是开发使用低温氦进行湍流测量的仪器,使用该仪器进行基本的湍流测量,并在RHIC建造一个主要的对流室。该项目的成功完成将使美国在低温氦湍流研究方面处于世界领先地位,并为未来超高雷诺数和瑞利数现象的研究奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Donnelly其他文献

Russell Donnelly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Donnelly', 18)}}的其他基金

Conference on Vortex Rings in Classical & Quantum Systems; Trieste,Italy at the Abdus Salam International Center for Theoretical Physics; June 6-10, 2005
古典涡环会议
  • 批准号:
    0524114
  • 财政年份:
    2005
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
Absolute Zero and the Conquest of Cold
绝对零与征服寒冷
  • 批准号:
    0307939
  • 财政年份:
    2003
  • 资助金额:
    $ 500万
  • 项目类别:
    Continuing Grant
Collaborative Research: The Physics of Thermal and Superfluid Turbulence
合作研究:热湍流和超流体湍流物理学
  • 批准号:
    0202554
  • 财政年份:
    2002
  • 资助金额:
    $ 500万
  • 项目类别:
    Continuing Grant
Absolute Zero and the Conquest for Cold -- A Planning Grant
绝对零和征服寒冷——规划补助金
  • 批准号:
    0102287
  • 财政年份:
    2001
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
International Workshop on Ultra-high Reynolds Number Flows, Brookhaven National Laboratory, Upton, New York
超高雷诺数流国际研讨会,布鲁克海文国家实验室,纽约厄普顿
  • 批准号:
    9614058
  • 财政年份:
    1996
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
Rotating Channel Flow
旋转通道流量
  • 批准号:
    9422442
  • 财政年份:
    1995
  • 资助金额:
    $ 500万
  • 项目类别:
    Continuing Grant
The Twentieth Internatioanl Conference on Low Temperature Physics (LT20); Eugene, Oregon; August 4-11, 1993
第二十届国际低温物理会议(LT20);
  • 批准号:
    9302790
  • 财政年份:
    1993
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
The Physics of Fluids
流体物理学
  • 批准号:
    9118924
  • 财政年份:
    1992
  • 资助金额:
    $ 500万
  • 项目类别:
    Continuing Grant
The Physics of Fluids
流体物理学
  • 批准号:
    8815803
  • 财政年份:
    1988
  • 资助金额:
    $ 500万
  • 项目类别:
    Continuing Grant
Equipment for High Resolution Dielectric Measurements in Liquid Helium (Materials Research)
液氦中高分辨率介电测量设备(材料研究)
  • 批准号:
    8719099
  • 财政年份:
    1988
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant

相似海外基金

Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
  • 批准号:
    23K28359
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ヘリウム粒子(Helium)CT画像システムの新規開発
新开发的氦粒子(Helium)CT成像系统
  • 批准号:
    24K10888
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum non-locality with mass-entangled metastable helium atoms atoms
质量纠缠亚稳态氦原子的量子非局域性
  • 批准号:
    DP240101346
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Discovery Projects
Postdoctoral Fellowship: EAR-PF: The effects of grain-scale deformation on helium diffusion and thermochronometric ages of accessory minerals
博士后奖学金:EAR-PF:晶粒尺度变形对氦扩散和副矿物热测年年龄的影响
  • 批准号:
    2305568
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Fellowship Award
Shedding Light on the Proton Radius Puzzle with Ultracold Helium
用超冷氦揭示质子半径之谜
  • 批准号:
    DP240101441
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Discovery Projects
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23K26488
  • 财政年份:
    2024
  • 资助金额:
    $ 500万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MRI: Track 3 Acquisition of a Helium Liquefaction and Recovery System for METRIC NMR Laboratories at NC State
MRI:轨道 3 为北卡罗来纳州 METRIC NMR 实验室采购氦液化和回收系统
  • 批准号:
    2320092
  • 财政年份:
    2023
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of a 400 MHz NMR Spectrometer to Expand and Secure Solution NMR Spectroscopy at UConn with Facility Helium Stewardship
MRI:轨道 1 采购 400 MHz NMR 波谱仪,通过设施氦气管理来扩展和保护康涅狄格大学的 NMR 波谱解决方案
  • 批准号:
    2320586
  • 财政年份:
    2023
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Helium Recovery Equipment For Time-Resolved ARPES at NSF-NeXUS
MRI:在 NSF-NeXUS 采购用于时间分辨 ARPES 的氦回收设备
  • 批准号:
    2320634
  • 财政年份:
    2023
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
MRI: Track 3 Acquisition of Helium Recovery Equipment at West Virginia University
MRI:第 3 轨道采购西弗吉尼亚大学氦回收设备
  • 批准号:
    2320495
  • 财政年份:
    2023
  • 资助金额:
    $ 500万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了