Symmetric and Geometric Methods
对称和几何方法
基本信息
- 批准号:9554850
- 负责人:
- 金额:$ 2.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-01-01 至 1997-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetry has played a ubiquitous role in our civilization throughout all ages. Mankind has been fascinated by the inherent beauty of symmetry in nature and has explored and searched for understanding its implications in his culture. This preoccupation with symmetry has led to discovery of rich mathematical theories to explain and apply symmetry in a vast number of subjects ranging from anthropology and the arts to engineering and the sciences. This project proposes to use symmetry and geometric methods in the sciences, the arts and engineering as a theme to develop topic-oriented course-modules that can be adapted in revitalizing undergraduate education in mathematics and other subjects. It is proposed to expose and explore some of these theories in their context of discovery and applications, constantly drawing attention to the quantitative and qualitative geometric methods that accompany the intuitive reasoning. It is reasonable to expect that a number of students will be attracted to engineering, mathematics and the sciences through their experience with such material. The proposed lab portion of the course-modules intends to get the students involved hands-on in exploring modern and advanced topics that are inaccessible in the present linearly ordered college curriculum, especially those that requires prerequisites from several mathematics and science courses.
对称性在我们的文明中一直扮演着无处不在的角色。 人类一直着迷于自然界中固有的对称美,并探索和寻求理解其在文化中的含义。这种对对称性的关注导致了丰富的数学理论的发现,这些理论可以解释对称性并将其应用于从人类学和艺术到工程和科学的大量学科中。 该项目建议在科学、艺术和工程学中使用对称和几何方法作为主题,以开发面向主题的课程模块,这些模块可用于振兴数学和其他学科的本科教育。 建议对其中的一些理论进行揭露和探讨 在 他们的发现和应用的背景下,不断提请注意定量和定性几何方法,伴随着直观的推理。 可以合理地预期,一些学生将通过他们对这些材料的经验而被吸引到工程、数学和科学领域。 课程模块的拟议实验室部分旨在让学生参与实践探索现代和先进的主题,这些主题在目前线性有序的大学课程中无法访问,特别是那些需要几门数学和科学课程的先决条件的主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Assadi其他文献
Information dynamics in dopaminergic networks
- DOI:
10.1186/1471-2202-9-s1-p40 - 发表时间:
2008-07-11 - 期刊:
- 影响因子:2.300
- 作者:
Amir Assadi;Hesam Dashti-Torabi;Mary Kloc;Gregory Michelotti;Tong H Lee - 通讯作者:
Tong H Lee
Electro-Thermal Codesign Methodology of an On-Board Electric Vehicle Charger
车载电动汽车充电器的电热协同设计方法
- DOI:
10.1115/1.4047226 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
O. Tayyara;Carlos da Silva;M. Nasr;Amir Assadi;K. Gupta;O. Trescases;C. Amon - 通讯作者:
C. Amon
InfoMax gene networks constructed from intervention in the animal models of Parkinson's disease
- DOI:
10.1186/1471-2202-8-s2-p134 - 发表时间:
2007-07-06 - 期刊:
- 影响因子:2.300
- 作者:
Hesam T Dashti;Mary Kloc;Tong Lee;Gregory Michelotti;Tingting Zhang;Amir Assadi - 通讯作者:
Amir Assadi
Patterns recognition in the ECoG data of auditory evoked response
- DOI:
10.1186/1471-2202-8-s2-p132 - 发表时间:
2007-07-06 - 期刊:
- 影响因子:2.300
- 作者:
Amir Assadi;Arash Bahrami;Yang Yang;Hamid Eghbalnia - 通讯作者:
Hamid Eghbalnia
Features of network oscillations in data from single-channel neuronal recording
- DOI:
10.1186/1471-2202-8-s2-p131 - 发表时间:
2007-07-06 - 期刊:
- 影响因子:2.300
- 作者:
Amir Assadi;Arash Bahrami;Erwin Montgomery;Hamid Eghbalnia - 通讯作者:
Hamid Eghbalnia
Amir Assadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Assadi', 18)}}的其他基金
SCREMS: Scientific Computing Research Environments for the Mathematical Sciences
SCEMS:数学科学的科学计算研究环境
- 批准号:
0923296 - 财政年份:2009
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
Symmetry Across the Curriculum: Symbolic and Visual Learning In the Arts, Mathematics, and Basic Science
整个课程的对称性:艺术、数学和基础科学中的符号和视觉学习
- 批准号:
9653095 - 财政年份:1997
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
Research and Training in Vision and Computational Neuroscience
视觉和计算神经科学的研究和培训
- 批准号:
9707006 - 财政年份:1997
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric and Cohomological Methods in Transformation Groups and Representation Theory
数学科学:变换群和表示论中的几何和上同调方法
- 批准号:
9200273 - 财政年份:1992
- 资助金额:
$ 2.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Cohomological Topics in Finite Transformation Groups and Applications"
数学科学:《有限变换群中的上同调专题及其应用》
- 批准号:
9000582 - 财政年份:1990
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Differential Cobordism and Related Topics
数学科学:微分共边及相关主题
- 批准号:
8421369 - 财政年份:1985
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
- 批准号:
2220271 - 财政年份:2023
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
Geometric scattering methods for the conformal Einstein field equations
共形爱因斯坦场方程的几何散射方法
- 批准号:
EP/X012417/1 - 财政年份:2023
- 资助金额:
$ 2.52万 - 项目类别:
Research Grant
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
- 批准号:
DP220102232 - 财政年份:2022
- 资助金额:
$ 2.52万 - 项目类别:
Discovery Projects
Fourier analytic methods in convex geometry and geometric tomography
凸几何和几何断层扫描中的傅立叶分析方法
- 批准号:
RGPIN-2019-06013 - 财政年份:2022
- 资助金额:
$ 2.52万 - 项目类别:
Discovery Grants Program - Individual
Analysis of geometric discretization methods
几何离散化方法分析
- 批准号:
RGPIN-2020-04389 - 财政年份:2022
- 资助金额:
$ 2.52万 - 项目类别:
Discovery Grants Program - Individual
Geometric methods in the p-adic Langlands program
p 进朗兰兹纲领中的几何方法
- 批准号:
2201112 - 财政年份:2022
- 资助金额:
$ 2.52万 - 项目类别:
Standard Grant
Geometric Methods in Complex Analysis
复杂分析中的几何方法
- 批准号:
RGPIN-2020-04432 - 财政年份:2022
- 资助金额:
$ 2.52万 - 项目类别:
Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
- 批准号:
RGPIN-2018-03880 - 财政年份:2022
- 资助金额:
$ 2.52万 - 项目类别:
Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
- 批准号:
RGPIN-2020-05316 - 财政年份:2022
- 资助金额:
$ 2.52万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




