ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks

ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法

基本信息

  • 批准号:
    2220271
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Complex networks arise in many natural systems, such as social networks, opinion networks, and biological networks, as well as in engineered systems like communication networks such as the Internet. Detecting communities, that is, clusters of nodes with dense interconnections, is a crucial problem with numerous applications. In real-world complex networks, community structures change over time. Dynamic networks, where nodes and network topology have mutually dependent (co-evolving) dynamics, are actively studied in physics, control theory, and robotics. The primary objectives of this project are to establish mathematical tools and algorithms for community detection, using geometric techniques, and to develop a mathematical model for dynamic networks. The applications of this project include security and threat detection. Some of the research will involve graduate and undergraduate students, and the software developed will be made freely available to other researchers. Communities in networks can be viewed as discrete counterparts of thick-thin decompositions in Riemannian geometry. Drawing inspiration from geometry and the success of Hamilton-Perelman's Ricci flow program, the investigators recently proposed discrete Ricci flows for community detection in networks. Experimental investigations have demonstrated that the proposed method can accurately detect communities. However, several theoretical problems, such as the long-term convergence of the flow, remain open. Resolving these issues will be the main focus of the first project. The second project aims to find models that explain the emergence of communities in social and opinion networks. By considering a social network as a graph with specific attributes at nodes (e.g., opinions) and edges (e.g., tie relations), the investigators plan to understand how opinions influence tie relations and vice versa over an extended period. They also seek to determine if the network will become polarized or decomposed into communities with different opinions. For threat detection, particular emphasis will be placed on identifying small clusters of extreme. Two mathematical models are proposed to monitor the dynamic changes in opinion networks. The main goals are understanding the long-term behavior of these models and mathematically establishing the existence of the asymptotic limit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂网络出现在许多自然系统中,例如社交网络、意见网络和生物网络,以及工程系统,例如通信网络,例如互联网。检测社区,即具有密集互连的节点集群,是许多应用的关键问题。在现实世界的复杂网络中,社区结构随着时间的推移而变化。动态网络,其中节点和网络拓扑具有相互依赖(共同进化)的动态,在物理学,控制理论和机器人学中被积极研究。该项目的主要目标是建立数学工具和算法的社区检测,使用几何技术,并开发一个动态网络的数学模型。该项目的应用包括安全和威胁检测。一些研究将涉及研究生和本科生,开发的软件将免费提供给其他研究人员。 网络中的社区可以看作是黎曼几何中粗细分解的离散对应物。从几何学和Hamilton-Perelman的Ricci流程序的成功中汲取灵感,研究人员最近提出了离散Ricci流用于网络中的社区检测。实验研究表明,该方法可以准确地检测社区。然而,一些理论问题,如长期收敛的流量,仍然开放。解决这些问题将是第一个项目的主要重点。第二个项目旨在找到解释社区在社会和舆论网络中出现的模型。通过将社交网络视为在节点处具有特定属性的图(例如,意见)和边缘(例如,领带关系),调查人员计划了解意见如何影响领带关系,反之亦然,在一个较长的时期。他们还试图确定网络是否会两极分化或分解为不同意见的社区。对于威胁探测,将特别强调识别小规模极端威胁集群。提出了两个数学模型来监测意见网络的动态变化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Luo其他文献

Function and potential application of quorum sensing in nitrogen-removing functional bacteria: a review
群体感应在脱氮功能细菌中的功能和潜在应用:综述
  • DOI:
    10.5004/dwt.2021.27373
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Feng Luo;Huizhi Hu;Yirong Liu
  • 通讯作者:
    Yirong Liu
Diagnosis prevention and treatment for PICC‐related upper extremity deep vein thrombosis in breast cancer patients
乳腺癌患者PICC相关上肢深静脉血栓的诊治
  • DOI:
    10.1111/j.1743-7563.2011.01508.x
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Xing;Vishnu Prasad Adhikari;Hong Liu;Ling;Sheng;Hong Yuan Li;G. Ren;Feng Luo;Kai
  • 通讯作者:
    Kai
Degradation of sulfonamides and formation of trihalomethanes by chlorination after pre-oxidation with Fe(VI)
Fe(VI) 预氧化后氯化降解磺酰胺并形成三卤甲烷
  • DOI:
    10.1016/j.jes.2018.01.016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Tuqiao Zhang;Feilong Dong;Feng Luo;Cong Li
  • 通讯作者:
    Cong Li
Abnormal elastic behaviour of poly(2-ureidoethyl methacrylate) physical hydrogels
聚(2-脲基乙基甲基丙烯酸酯)物理水凝胶的异常弹性行为
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taolin Sun;Takayuki Nonoyama;Yoshiyuki Saruwatari;Feng Luo;Takayuki Kurokawa;Tasuku Nakajima;Abu Bin Ihsan;Jian Ping Gong
  • 通讯作者:
    Jian Ping Gong
Synthesis and characterization of PLGA-PEG-PLGA based thermosensitive polyurethane micelles for potential drug delivery
用于潜在药物输送的基于 PLGA-PEG-PLGA 的热敏聚氨酯胶束的合成和表征
  • DOI:
    10.1080/09205063.2020.1854413
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Min Wang;Jianghao Zhan;Laijun Xu;Yanjun Wang;Dan Lu;Zhen Li;Jiyao Li;Feng Luo;Hong Tan
  • 通讯作者:
    Hong Tan

Feng Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Luo', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
旅费:2021 年 IEEE 国际生物信息学和生物医学会议 (BIBM) 的 NSF 学生旅费补助金
  • 批准号:
    2131662
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Cyberinstrument for AI-Enabled Computational Science & Engineering
MRI:购买用于人工智能计算科学的网络仪器
  • 批准号:
    2018069
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760527
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ABI Innovation: Fast Algorithms and Tools for Single-Molecule Sequencing Reads
ABI 创新:单分子测序读取的快速算法和工具
  • 批准号:
    1759856
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Discrete Conformal Geometry of Surfaces and Applications
曲面的离散共形几何及其应用
  • 批准号:
    1811878
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
  • 批准号:
    1737876
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Geometry and Topology of Polyhedral Surfaces
多面体表面的几何和拓扑
  • 批准号:
    1405106
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: ATD: Algorithmic Aspects of Geometry for Using LIDAR and Wireless Sensor Networks for Combating Chemical Terror Attacks
合作研究:ATD:使用激光雷达和无线传感器网络对抗化学恐怖袭击的几何算法
  • 批准号:
    1222663
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Teichmuller Theory and Quantum Topology
泰希米勒理论和量子拓扑
  • 批准号:
    1207832
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Volume Optimization on Triangulated 3-Manifolds.
三角 3 流形的体积优化。
  • 批准号:
    1105808
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
  • 批准号:
    2237288
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223871
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
  • 批准号:
    2212130
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Geometric structures guided learning model and algorithms for bulk RNAseq data analysis
用于批量 RNAseq 数据分析的几何结构引导学习模型和算法
  • 批准号:
    10592460
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
  • 批准号:
    RGPIN-2020-03959
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Algorithms for Geometric Shortest Paths and Related Problems
AF:小:几何最短路径算法及相关问题
  • 批准号:
    2300356
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
  • 批准号:
    2223870
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analyzing Geometric Partitioning Algorithms for Tabular Data Visualization
分析表格数据可视化的几何分区算法
  • 批准号:
    575482-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
  • 批准号:
    2212129
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Models and algorithms for interactive machine learning applied to formal languages and geometric concepts
应用于形式语言和几何概念的交互式机器学习模型和算法
  • 批准号:
    RGPIN-2017-05336
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了