Molecular Mechanisms of Chloroplast Division in Higher Plants
高等植物叶绿体分裂的分子机制
基本信息
- 批准号:9604412
- 负责人:
- 金额:$ 35.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-03-15 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9604412 Osteryoung Technical abstract: Organelle replication is critical for growth and development in all eukaryotes. However, very little is known about the molecular mechanisms by which organelles divide or how their numbers are controlled. Dr. Osteryoung has identified a cDNA from Arabidopsis thaliana, designated cpFtsZ, that may play a central role in the division of chloroplasts. This nuclear gene encodes a chloroplast-localized homologue of the bacterial protein FtsZ. FtsZ is a key structural component of the bacterial cell division machinery that assembles to form a ring-like structure at the division site during bacterial cytokinesis. Discovery of eukaryotic cpFtsZ suggests that division mechanisms in organelles and prokaryotes are similar, and for the first time opens the door to a molecular dissection of the organelle division process in eukaryotes. The goal of this project is to begin a detailed analysis of the role of cpFtsZ in chloroplast division, using Arabidopsis thaliana as a model system. To test the hypothesis that cpFtsZ is important for chloroplast division, transgenic plants will be generated with enhanced or reduced expression of cpFtsZ, and the effect of such genetic manipulations on chloroplast number will be assessed. The question of whether the cpFtsZ gene maps to and/or complements any of the known mutations in Arabidopsis that affect chloroplast division will be addressed. The localization of the cpFtsZ protein within the chloroplast will be investigated in dividing and non-dividing chloroplasts. The relationship between cpFtsZ expression and chloroplast division will be examined by analyzing the spatial and temporal patterns of cpFtsZ expression in relation to patterns of chloroplast division. Because preliminary data suggest that there are multiple FtsZ homologues in Arabidopsis, additional FtsZ related genes will be isolated and the subcellular localization of their gene products will be established. Additional plastid-localized FtsZ homologues , if extant, would suggest the possibility of differential regulation in different cell types or of functional heterogeneity among related proteins. The longer-term goal of this project is to develop a comprehensive model describing the biochemical and molecular processes that govern chloroplast division in higher plants. Lay-language abstract: In plants, the chloroplast is the key subcellular organelle that is responsible for photosynthesis, the process that converts sunlight energy to a form of chemical energy, i.e., through photochemical conversion of carbon dioxide plus water to sugar. This fundamental life process is what enables much of life (plants and animals) as we know it to exist on earth. Chloroplasts are generally regarded as having evolved from free-living bacteria that entered into a close symbiotic (endosymbiotic) relationship with other cells. Although most of the components of the chloroplasts are made of gene products encoded by the plant cell's nuclear genes, chloroplasts are nonetheless semi-autonomous, in that they have their own genes and protein synthetic machinery, and they increase in number by a process of division much like cell division. When plant cells divide, as they must as the plant grows and develops, it is critical that the chloroplasts also divide so that they can be distributed among the progeny cells. How this occurs is as yet a mystery. Dr. Osteryoung has discovered a gene in plants that is homologous to a gene that plays a key role in bacterial cell division. She hypothesizes that this protein functions in chloroplast division in a manner similar to how it functions in bacterial cell division. The goal of this project is to test this hypothesis. The results of this research are expected to advance our understanding of how chloroplasts divide in order to be properly distributed among the various cells of a growing and developing plant. ***
技术摘要:细胞器复制是所有真核生物生长发育的关键。然而,关于细胞器分裂的分子机制或它们的数量是如何控制的,人们知之甚少。奥斯特杨博士从拟南芥中鉴定出一种cDNA,命名为cpFtsZ,它可能在叶绿体分裂中起着核心作用。该核基因编码细菌蛋白FtsZ的叶绿体同源物。FtsZ是细菌细胞分裂机制的关键结构成分,在细菌细胞质分裂过程中,在分裂位点组装形成环状结构。真核cpFtsZ的发现表明,细胞器和原核生物的分裂机制相似,并首次为真核生物细胞器分裂过程的分子解剖打开了大门。本项目以拟南芥为模型系统,开始详细分析cpFtsZ在叶绿体分裂中的作用。为了验证cpFtsZ对叶绿体分裂有重要作用的假设,我们将通过提高或降低cpFtsZ的表达产生转基因植株,并评估这些基因操作对叶绿体数量的影响。cpFtsZ基因是否映射和/或补充拟南芥中影响叶绿体分裂的任何已知突变的问题将得到解决。cpFtsZ蛋白在叶绿体中的定位将在分裂和非分裂叶绿体中进行研究。通过分析cpFtsZ表达与叶绿体分裂模式的时空关系,探讨cpFtsZ表达与叶绿体分裂之间的关系。由于初步数据表明拟南芥中存在多个FtsZ同源物,因此将进一步分离FtsZ相关基因并建立其基因产物的亚细胞定位。其他的FtsZ同源物,如果存在,将提示不同细胞类型的差异调节或相关蛋白之间的功能异质性的可能性。该项目的长期目标是建立一个全面的模型来描述控制高等植物叶绿体分裂的生化和分子过程。摘要:在植物中,叶绿体是负责光合作用的关键亚细胞细胞器,光合作用是将太阳能转化为化学能的过程,即通过将二氧化碳和水光化学转化为糖。这个基本的生命过程使我们所知的许多生命(植物和动物)得以在地球上生存。叶绿体通常被认为是从自由生活的细菌进化而来的,这些细菌与其他细胞形成了密切的共生(内共生)关系。虽然叶绿体的大部分成分是由植物细胞核基因编码的基因产物构成的,但叶绿体仍然是半自主的,因为它们有自己的基因和蛋白质合成机制,它们的数量通过分裂过程增加,就像细胞分裂一样。当植物细胞分裂时——这是植物生长发育过程中必须要做的事情——叶绿体的分裂是至关重要的,这样它们才能被分配到后代细胞中。这是如何发生的至今仍是一个谜。奥斯特杨博士在植物中发现了一种基因,这种基因与在细菌细胞分裂中起关键作用的基因同源。她假设这种蛋白质在叶绿体分裂中的作用与它在细菌细胞分裂中的作用相似。这个项目的目标是检验这个假设。这项研究的结果有望促进我们对叶绿体如何分裂以便在生长和发育的植物的各种细胞中正确分布的理解。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Osteryoung其他文献
Carbon dioxide exchange characteristics of C4 Hawaiian Euphorbia species native to diverse habitats
- DOI:
10.1007/bf00376921 - 发表时间:
1982-12-01 - 期刊:
- 影响因子:2.300
- 作者:
Robert W. Pearcy;Katherine Osteryoung;David Randall - 通讯作者:
David Randall
Katherine Osteryoung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Osteryoung', 18)}}的其他基金
2018 Mitochondria and Chloroplasts: Fundamental Processes in Organelle Biology: Evolution, Biogenesis, Dynamics and Quality Control GRC; July 7-13; 2018; II Ciocco, Lucca, Italy
2018 线粒体和叶绿体:细胞器生物学的基本过程:进化、生物发生、动力学和质量控制 GRC;
- 批准号:
1822060 - 财政年份:2018
- 资助金额:
$ 35.19万 - 项目类别:
Standard Grant
Mechanistic Insights Into Chloroplast FtsZ Assembly and Dynamics
叶绿体 FtsZ 组装和动力学的机制见解
- 批准号:
1719376 - 财政年份:2017
- 资助金额:
$ 35.19万 - 项目类别:
Standard Grant
Cyanobacterial Cell Division: Mechanisms and Inputs Towards the Decision to Divide
蓝藻细胞分裂:分裂决定的机制和输入
- 批准号:
1517241 - 财政年份:2015
- 资助金额:
$ 35.19万 - 项目类别:
Standard Grant
Assembly, Dynamics and Regulation of Chloroplast FtsZ
叶绿体 FtsZ 的组装、动力学和调控
- 批准号:
1121943 - 财政年份:2011
- 资助金额:
$ 35.19万 - 项目类别:
Continuing Grant
Towards a Model for FtsZ Structure and Dynamics in Chloroplast Division
叶绿体分裂 FtsZ 结构和动力学模型
- 批准号:
0544676 - 财政年份:2006
- 资助金额:
$ 35.19万 - 项目类别:
Continuing Grant
Arabadopsis 2010: Identification of New Plastid Division Genes in Arabidopsis and Comprehensive Analysis of Their Functions
拟南芥2010:拟南芥质体分裂新基因的鉴定及其功能综合分析
- 批准号:
0313520 - 财政年份:2003
- 资助金额:
$ 35.19万 - 项目类别:
Continuing Grant
Molecular Composition of the Chloroplast Division Apparatus
叶绿体分裂装置的分子组成
- 批准号:
0092448 - 财政年份:2001
- 资助金额:
$ 35.19万 - 项目类别:
Continuing Grant
Molecular Mechanisms of Chloroplast Division in Higher Plants
高等植物叶绿体分裂的分子机制
- 批准号:
0096223 - 财政年份:2000
- 资助金额:
$ 35.19万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Elucidation of Molecular Mechanisms of Protein Translocation across the Chloroplast Envelope
阐明蛋白质跨叶绿体包膜易位的分子机制
- 批准号:
19H03183 - 财政年份:2019
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Defining Critical Transport Mechanisms for Chloroplast Osmoregulation and Salt Stress Response
职业:定义叶绿体渗透调节和盐胁迫反应的关键运输机制
- 批准号:
1553506 - 财政年份:2016
- 资助金额:
$ 35.19万 - 项目类别:
Continuing Grant
Elucidation of the mechanisms of chloroplast intron splicing
阐明叶绿体内含子剪接机制
- 批准号:
16K07400 - 财政年份:2016
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms for maintenance of chloroplast genome stability by regulation of recombination
通过重组调节维持叶绿体基因组稳定性的机制
- 批准号:
16K18588 - 财政年份:2016
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Physiological roles and molecular mechanisms of abscisic acid-responsive chloroplast aggregative movement specific to C4 plants
C4植物特异性脱落酸响应叶绿体聚集运动的生理作用和分子机制
- 批准号:
26292011 - 财政年份:2014
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of molecular mechanisms of chloroplast protein import
阐明叶绿体蛋白输入的分子机制
- 批准号:
26291060 - 财政年份:2014
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of molecular mechanisms of chloroplast protein import
叶绿体蛋白输入的分子机制研究
- 批准号:
26650017 - 财政年份:2014
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Characterization of mechanisms for coordinated proliferation of the eukaryotic host cell and the chloroplast
真核宿主细胞和叶绿体协调增殖机制的表征
- 批准号:
25251039 - 财政年份:2013
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Elucidation of the protein degradation mechanisms in chloroplast during leaf senescence
阐明叶片衰老过程中叶绿体中的蛋白质降解机制
- 批准号:
25891018 - 财政年份:2013
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Regulatory mechanisms for the chloroplast genome functions through the nucleus-chloroplast signaling loops
叶绿体基因组通过核-叶绿体信号环路发挥功能的调节机制
- 批准号:
24248061 - 财政年份:2012
- 资助金额:
$ 35.19万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




