CAREER: Defining Critical Transport Mechanisms for Chloroplast Osmoregulation and Salt Stress Response
职业:定义叶绿体渗透调节和盐胁迫反应的关键运输机制
基本信息
- 批准号:1553506
- 负责人:
- 金额:$ 75.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plants are a prerequisite for life on earth. By performing photosynthesis in the chloroplast, a specialized cell compartment, plants transform light into chemical energy and fix CO2 from the atmosphere. Furthermore, they provide the air we breathe by releasing oxygen, and they represent the main part of our diet. As sessile life forms, plants have to cope with constantly changing, often times harsh, environments. As average temperatures rise, drought and interrelated soil salinity become increasingly problematic for plant performance and agricultural production in the US and globally. Salt stress affects photosynthesis by destroying the fine-tuned ion balance in the chloroplast. This process involves transporter proteins but most genes encoding chloroplast ion transporters are unknown. Dr. Kunz and his group investigate a new set of plant genes and mutants to determine their role in chloroplast ion transport. Moreover, his group is building a genetic tool that allows for testing the relevance of all chloroplast proteins and entire protein families in plant function and photosynthesis. The tool will be applied to precisely determine the genes crucial for plant performance under salt stress. This research will provide critical knowledge and new strategies to increase crop yields even under adverse climatic conditions. Dr. Kunz engages high school students in his research to raise awareness for plant research and its significance for a sustainable future and to excite the future generation of scientist for the world's most fundamental biochemical process, photosynthesis.Plant photosynthesis is affected by soil salinity but little is known about the genes involved and their potential to improve plant resistance. Salt stress triggers changes in transcription of nuclear encoded chloroplast genes and the chloroplast proteome. Physiologically, salt stress leads to toxic Na+ accumulation in plastids and outcompeting of K+ which disturbs chloroplast ion homeostasis, osmoregulation, and eventually diminishes photosynthetic efficiency. Recently, the first plastid K+ efflux carriers were discovered. Corresponding loss-of-function mutant plants reveal poor photosynthesis under control conditions but, surprisingly, photosynthesis is rescued by salt stress. This emphasizes the potential of manipulating plastid ion flux to increase photosynthetic efficiency during salt stress. However, this approach is hindered by the limited number of characterized plastid ion transporters, most strikingly a chloroplast K+ importer. One hurdle is the high number of gene family members in chloroplasts which often results in functional redundancy and a lack of phenotypes. This project will: 1. Determine the role of plastid K+ channel homologs for K+ import, 2. Define the genes responsible for the unexpected salt stress rescue of plastid K+ efflux carrier mutants. 3. Build and apply a full-coverage artificial library tool to downregulate all nuclear encoded chloroplast genes and gene family transcripts in Arabidopsis thaliana and determine the genes responsible for plastid Na+ influx and low photosynthesis during salt stress. 4. Engage and excite high school students in plant science and photosynthesis by providing hands-on molecular biology training in the classroom and the laboratory.
植物是地球上生命的先决条件。通过在叶绿体(一种专门的细胞室)中进行光合作用,植物将光转化为化学能并固定大气中的CO2。此外,它们通过释放氧气提供我们呼吸的空气,它们代表了我们饮食的主要部分。作为固着的生命形式,植物必须科普不断变化的,往往是恶劣的环境。随着平均气温的上升,干旱和相关的土壤盐碱化对美国和全球的植物性能和农业生产造成越来越大的问题。盐胁迫通过破坏叶绿体中微调的离子平衡来影响光合作用。这一过程涉及转运蛋白,但大多数编码叶绿体离子转运蛋白的基因是未知的。Kunz博士和他的团队研究了一组新的植物基因和突变体,以确定它们在叶绿体离子运输中的作用。此外,他的团队正在构建一种遗传工具,可以测试所有叶绿体蛋白质和整个蛋白质家族在植物功能和光合作用中的相关性。该工具将用于精确确定盐胁迫下对植物性能至关重要的基因。这项研究将提供关键的知识和新的战略,以增加作物产量,即使在不利的气候条件下。Kunz博士让高中生参与他的研究,以提高人们对植物研究及其对可持续未来的意义的认识,并激发未来一代科学家对世界上最基本的生化过程-光合作用的兴趣。植物光合作用受土壤盐度的影响,但对相关基因及其提高植物抗性的潜力知之甚少。盐胁迫引起叶绿体核基因和叶绿体蛋白质组转录的变化。在生理上,盐胁迫导致质体中有毒的Na+积累和K+的竞争,这扰乱了叶绿体离子稳态,光合调节,并最终降低光合效率。最近,第一个质体K+外排载体被发现。相应的功能丧失突变体植物显示控制条件下光合作用差,但令人惊讶的是,光合作用是拯救盐胁迫。这强调了在盐胁迫下操纵质体离子通量以提高光合效率的潜力。然而,这种方法是有限的特征质体离子转运,最引人注目的是叶绿体K+进口商的数量受到阻碍。一个障碍是叶绿体中基因家族成员的数量很高,这通常导致功能冗余和表型缺乏。该项目将:1。确定质体K+通道同源物对K+输入的作用,2.确定负责质体K+外排载体突变体意外盐胁迫拯救的基因。3.构建并应用全覆盖的人工文库工具下调拟南芥叶绿体核基因和基因家族转录本,确定盐胁迫下质体Na+内流和光合作用降低的相关基因。4.通过在教室和实验室提供动手分子生物学培训,让高中学生参与并激发植物科学和光合作用。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans-Henning Kunz其他文献
Cyclic electron flow compensates loss of PGDH3 and concomitant stromal NADH reduction
循环电子流补偿了 PGDH3 的损失以及伴随的基质 NADH 减少
- DOI:
10.1038/s41598-024-80836-x - 发表时间:
2024-11-26 - 期刊:
- 影响因子:3.900
- 作者:
Moritz Krämer;Nicolás E. Blanco;Jan-Ferdinand Penzler;Geoffry A. Davis;Benjamin Brandt;Dario Leister;Hans-Henning Kunz - 通讯作者:
Hans-Henning Kunz
Hans-Henning Kunz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans-Henning Kunz', 18)}}的其他基金
ERA-CAPS: Collaborative Research: Thylakoid ion flux-Linking photosynthetic efficiency with osmotic stress response
ERA-CAPS:合作研究:类囊体离子通量-将光合效率与渗透胁迫响应联系起来
- 批准号:
1847382 - 财政年份:2018
- 资助金额:
$ 75.79万 - 项目类别:
Standard Grant
MRI: Acquisition of a Total Reflection X-ray Fluorescence Spectrometer to Enable Ultra-Trace Element Analysis at Washington State University
MRI:华盛顿州立大学购买全反射 X 射线荧光光谱仪以实现超痕量元素分析
- 批准号:
1828266 - 财政年份:2018
- 资助金额:
$ 75.79万 - 项目类别:
Standard Grant
相似海外基金
Defining and Optimizing Critical Interpretation Skills in Screening Mammography to Improve Cancer Detection
定义和优化筛查乳房 X 光检查的关键解释技能,以提高癌症检出率
- 批准号:
10614623 - 财政年份:2022
- 资助金额:
$ 75.79万 - 项目类别:
Defining the systems level biology of microbiome-immune interactions in critical illness for the development of targeted therapeutics and interventions.
定义危重疾病中微生物组-免疫相互作用的系统级生物学,以开发靶向治疗和干预措施。
- 批准号:
475958 - 财政年份:2022
- 资助金额:
$ 75.79万 - 项目类别:
Studentship Programs
Defining the critical genomic dependencies of non-V600 BRAF mutant tumors to optimize targeted therapeutic strategies
定义非 V600 BRAF 突变肿瘤的关键基因组依赖性,以优化靶向治疗策略
- 批准号:
472038 - 财政年份:2022
- 资助金额:
$ 75.79万 - 项目类别:
Fellowship Programs
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
- 批准号:
466020 - 财政年份:2022
- 资助金额:
$ 75.79万 - 项目类别:
Directed Grant
Canadian Critical Care Trials Group COVID-19 Response: defining critical care capacity in Canada; testing treatments through large-scale adaptive clinical trials; & establishing the evidence base to inform clinical and health system management decisions
加拿大重症监护试验组 COVID-19 响应:定义加拿大的重症监护能力;
- 批准号:
465699 - 财政年份:2022
- 资助金额:
$ 75.79万 - 项目类别:
Directed Grant
Defining and Optimizing Critical Interpretation Skills in Screening Mammography to Improve Cancer Detection
定义和优化筛查乳房 X 光检查的关键解释技能,以提高癌症检出率
- 批准号:
10444007 - 财政年份:2022
- 资助金额:
$ 75.79万 - 项目类别:
Collaborative Research: MIM: Defining the rules governing microbiome interactions critical for providing key ecosystem functions using a model diazotroph community
合作研究:MIM:定义控制微生物组相互作用的规则,这对于使用固氮微生物群落模型提供关键生态系统功能至关重要
- 批准号:
2125191 - 财政年份:2021
- 资助金额:
$ 75.79万 - 项目类别:
Standard Grant
Defining the Critical Function and Regulation of NNMT in Breast Cancer Progression and Metastasis
明确 NNMT 在乳腺癌进展和转移中的关键功能和调节
- 批准号:
10606561 - 财政年份:2021
- 资助金额:
$ 75.79万 - 项目类别:
Defining the Critical Function and Regulation of NNMT in Breast Cancer Progression and Metastasis
明确 NNMT 在乳腺癌进展和转移中的关键功能和调节
- 批准号:
10181998 - 财政年份:2021
- 资助金额:
$ 75.79万 - 项目类别:
Collaborative Research: MIM: Defining the rules governing microbiome interactions critical for providing key ecosystem functions using a model diazotroph community
合作研究:MIM:定义控制微生物组相互作用的规则,这对于使用固氮微生物群落模型提供关键生态系统功能至关重要
- 批准号:
2125063 - 财政年份:2021
- 资助金额:
$ 75.79万 - 项目类别:
Standard Grant