Measure and Randomness in Computational Complexity
计算复杂性的测量和随机性
基本信息
- 批准号:9610461
- 负责人:
- 金额:$ 18.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates resource-bounded measure and its implications for central questions in computational complexity. Weak completeness will be further developed as a tool for proving intractability. Such strong hypotheses as "NP does not have p- measure 0" (already known to have numerous plausible consequences) will be studied with particular attention to their reasonableness and explanatory power. New applications of the resource-bounded probabilistic method will be sought, and relationships among randomized complexity, circuit-size complexity, natural proofs, and one-way functions will be carefully examined. The underlying theory of resource-bounded measure will be extended in order to apply it to a wider variety of problems and probability measures. This will include a systematic study of efficient martingales and transformations of martingales. Applications of the extended theory to algorithmic information, computational depth, machine learning and prediction, real-and complex-valued computation, and the computation of higher-type functionals will be investigated.
本计画探讨资源限制测度及其对计算复杂性中心问题的意涵。 弱完备性将进一步发展为证明难处理性的工具。 像“NP不具有p-测度0”这样的强假设(已经知道有许多可能的结果)将被研究,特别注意它们的合理性和解释力。 资源有限的概率方法的新应用将寻求,随机复杂性,电路大小的复杂性,自然的证据,和单向函数之间的关系将仔细检查。 资源有限测度的基本理论将得到扩展,以便将其应用于更广泛的问题和概率测度。 这将包括有效鞅和鞅变换的系统研究。 将研究扩展理论在算法信息、计算深度、机器学习和预测、实值和复值计算以及高阶泛函计算中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Lutz其他文献
Jack Lutz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Lutz', 18)}}的其他基金
INSPIRE: Robust Molecular Programming: Advances in the Design and Verification of Reliable Self-Assembling Nanosystems
INSPIRE:鲁棒分子编程:可靠自组装纳米系统的设计和验证进展
- 批准号:
1247051 - 财政年份:2012
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Modeling and Analysis of Molecular Programming and Nanoscale Self-Assembly
EAGER:协作研究:分子编程和纳米级自组装的建模和分析
- 批准号:
1143830 - 财政年份:2011
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Algorithmic Randomness
FRG:协作研究:算法随机性
- 批准号:
0652569 - 财政年份:2007
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant
Effective Dimensions in the Theory of Computing
计算理论中的有效维度
- 批准号:
0728806 - 财政年份:2007
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
SGER: Multidisciplinary Aspects of Computation Theory
SGER:计算理论的多学科方面
- 批准号:
0344187 - 财政年份:2003
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Measure and Information in Computational Complexity
计算复杂性的测量和信息
- 批准号:
9988483 - 财政年份:2000
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
PYI: The Internal Quantitative Structure of Complexity Classes
PYI:复杂性类别的内部定量结构
- 批准号:
9157382 - 财政年份:1991
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant
Research Initiation: Measure and Category in Complexity Classes
研究启动:复杂性类别中的度量和类别
- 批准号:
8809238 - 财政年份:1988
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
相似海外基金
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Interplay between geometry and randomness in fitness landscapes for expanding populations
人口增长的健身景观中几何与随机性之间的相互作用
- 批准号:
EP/X040089/1 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
- 批准号:
22KJ1845 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Robust Quantum Randomness for Industry
工业领域强大的量子随机性
- 批准号:
10041956 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Collaborative R&D
Randomness in High-Dimensional Combinatorics: Colorings, Robustness, and Statistics
高维组合中的随机性:着色、鲁棒性和统计
- 批准号:
2247078 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant
AF: Small: The Power of Randomness in Decision and Verification
AF:小:决策和验证中随机性的力量
- 批准号:
2312540 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
- 批准号:
2302988 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
Taming the randomness of random lasers with reconfigurable active particle assemblies
利用可重构的活性粒子组件来驯服随机激光器的随机性
- 批准号:
2303189 - 财政年份:2023
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
ASCENT: TUNA: TUnable randomness for NAtural computing
ASCENT:TUNA:TU 无法实现自然计算的随机性
- 批准号:
2230963 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant