Functional Renormalization Group Methods in Quantum Gravity
量子引力中的函数重整化群方法
基本信息
- 批准号:106106861
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Independent Junior Research Groups
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the major challenges in theoretical high energy physics is the construction of a fundamental theory of gravity valid at all distance scales. While such a description is yet unknown, it is expected to provide answers to central questions such as the tiny value of the cosmological constant or the origin of dark matter. This proposal will spearhead the exploration of a promising candidate theory for Quantum Gravity, Weinberg’s asymptotic safety scenario. Here the key idea is that gravity is a consistent and predictive quantum theory at the nonperturbative level. The primary tools for investigating this scenario analytically are functional renormalization group equations, which provide an important window on the non-perturbative properties of the theory. So far these have yielded substantial evidence for asymptotic safety without yet being conclusive. Thus our proposal will develop new techniques for studying the non-perturbative renormalization group flow of pure gravity, gravity-matter, and supergravity theories. These will be used to implement several acid tests for asymptotic safety and study its phenomenological consequences for the physics of the early universe, black holes, cosmology and supersymmetry. Moreover, connecting hitherto unrelated candidate theories of Quantum Gravity, our work will boost the understanding of several open conceptual points in this research area.
理论高能物理的主要挑战之一是建立适用于所有距离尺度的引力基本理论。虽然这样的描述还不为人所知,但预计它将为一些核心问题提供答案,比如宇宙常数的微小价值或暗物质的起源。这一提议将带头探索量子引力的一个有前途的候选理论,即温伯格的渐近安全假设。这里的关键思想是,引力是一个在非微扰水平上一致的、可预测的量子理论。解析地研究这种情形的主要工具是泛函重整化群方程,它为研究该理论的非微扰性质提供了一个重要的窗口。到目前为止,这些都为渐近安全性提供了实质性的证据,但尚未形成定论。因此,我们的提议将为研究纯重力、重力物质和超引力理论的非微扰重整化群流发展新的技术。这些将被用来实施几个渐近安全的酸性测试,并研究其对早期宇宙、黑洞、宇宙学和超对称性物理的现象学后果。此外,我们的工作将结合迄今为止无关的量子引力候选理论,促进对这一研究领域中几个开放概念的理解。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional renormalization group of the nonlinear sigma model and theO(N)universality class
非线性 sigma 模型的函数重整化群和 O(N) 通用类
- DOI:10.1103/physrevd.87.065019
- 发表时间:2013
- 期刊:
- 影响因子:5
- 作者:R. Flore;A. Wipf;O. Zanusso
- 通讯作者:O. Zanusso
Fixed-Functionals of three-dimensional Quantum Einstein Gravity
三维量子爱因斯坦引力的固定泛函
- DOI:10.1007/jhep11(2012)131
- 发表时间:2012
- 期刊:
- 影响因子:5.4
- 作者:M. Demmel;F. Saueressig;O. Zanusso
- 通讯作者:O. Zanusso
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Frank Saueressig其他文献
Privatdozent Dr. Frank Saueressig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of functional-renormalization-group aided density functional theory as a novel method for many-body systems
泛函重正化群辅助密度泛函理论的发展作为多体系统的新方法
- 批准号:
20J00644 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Non-perturbative approximation schemes for the operator product expansion via the functional renormalization group
通过函数重正化群进行算子乘积展开的非微扰近似方案
- 批准号:
416523172 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Ab initio nuclear Density Functional Theory with uncertainty quantification from Functional Renormalization Group in Kohn-Sham scheme
Kohn-Sham 方案中泛函重正化群的不确定性量化的从头算核密度泛函理论
- 批准号:
18K13549 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Merging of dynamical mean-field theory and functional renormalization group
动力学平均场理论与泛函重正化群的融合
- 批准号:
299305516 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Functional-renormalization-group analysis on strongly correalted spin, charge, and orbital systems
强相关自旋、电荷和轨道系统的函数重正化群分析
- 批准号:
16K05442 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ground-state Properties of Many-body Systems from a Renormalization-Group Approach to Density Functional Theory
从重整化群方法到密度泛函理论的多体系统的基态性质
- 批准号:
281808276 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Functional renormalization group for fermions in three dimensions
三维费米子的功能重整化群
- 批准号:
289598096 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Realistic effective interactions from the functional renormalization group
来自功能重正化群的现实有效相互作用
- 批准号:
267991720 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Functional renormalization group approach to low-energy effective interactions in multi-band many-fermion systems
多带多费米子系统中低能有效相互作用的功能重正化群方法
- 批准号:
245977134 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Ground-state Properties of Nuclei from a Renormalization-Group Approach to Density Functional Theory (D01/Erg#)
从重正化群方法到密度泛函理论的原子核基态性质(D01/Suppl
- 批准号:
233768736 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Collaborative Research Centres














{{item.name}}会员




