Functional renormalization group for fermions in three dimensions

三维费米子的功能重整化群

基本信息

项目摘要

The goal of this theory project is to devise and apply a functional renormalization group (fRG) scheme for interacting electrons in three-dimensional (3D) lattices. Over the last two decades, fRG has been used to explore interaction effects in a multitude of zero-, one- and two-dimensional model systems, but 3D systems were essentially out of range because of numerical limitations. Particular advantages of the fRG are its unbiasedness as to what the dominant interaction tendencies at low scales are, and that the functional nature of the flow equations allows one to obtain a rather detailed picture of the effective low-energy physics, e.g. for the effective interactions. These strengths would of course also be helpful in the analysis of 3D interacting electron systems. Recent advances in the fRG, most importantly a technique called vertex decomposition, have made the description of the effective interaction much more efficient, both regarding numerical aspects as well as for the physical understanding of its structure. Hence, new extensions can be addressed. Here, we plan to develop vertex decomposition techniques for general three-dimensional interacting electron systems and to apply them to important model cases. As a first application of the 3D fRG approach, we envisage the study of linear and quadratic band crossing point models that have recently been considered as hosting non-Fermi liquid behavior, unconventional charge screening and interaction-induced topological states.
该理论项目的目标是设计并应用函数重正化群 (fRG) 方案来实现三维 (3D) 晶格中电子的相互作用。在过去的二十年中,fRG 已被用来探索多种零维、一维和二维模型系统中的相互作用效应,但由于数值限制,3D 系统基本上超出了范围。 fRG 的特殊优点是它对低尺度下的主要相互作用趋势没有偏见,并且流动方程的函数性质允许人们获得有效低能物理的相当详细的图像,例如以实现有效的互动。这些优势当然也有助于分析 3D 相互作用电子系统。 fRG 的最新进展,最重要的是一种称为顶点分解的技术,使得有效相互作用的描述更加有效,无论是在数值方面还是在对其结构的物理理解方面。因此,可以解决新的扩展问题。在这里,我们计划开发通用三维相互作用电子系统的顶点分解技术,并将其应用于重要的模型案例。 作为 3D fRG 方法的首次应用,我们设想研究线性和二次能带交叉点模型,这些模型最近被认为具有非费米液体行为、非常规电荷筛选和相互作用引起的拓扑状态。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Truncated-Unity Functional Renormalization Group for Multiband Systems With Spin-Orbit Coupling
  • DOI:
    10.3389/fphy.2018.00032
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    G. Schober;J. Ehrlich;Timo Reckling;C. Honerkamp
  • 通讯作者:
    G. Schober;J. Ehrlich;Timo Reckling;C. Honerkamp
Truncated-unity parquet equations: Application to the repulsive Hubbard model
  • DOI:
    10.1103/physrevb.98.075143
  • 发表时间:
    2018-08-24
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Eckhardt, C. J.;Schober, G. A. H.;Honerkamp, C.
  • 通讯作者:
    Honerkamp, C.
Functional renormalization group for fermion lattice models in three dimensions: Application to the Hubbard model on the cubic lattice
  • DOI:
    10.1103/physrevb.102.195108
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Ehrlich;C. Honerkamp
  • 通讯作者:
    J. Ehrlich;C. Honerkamp
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Carsten Honerkamp其他文献

Professor Dr. Carsten Honerkamp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Carsten Honerkamp', 18)}}的其他基金

Functional renormalization group approach to low-energy effective interactions in multi-band many-fermion systems
多带多费米子系统中低能有效相互作用的功能重正化群方法
  • 批准号:
    245977134
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Interaction-driven groundstates of few-layer graphene
相互作用驱动的少层石墨烯基态
  • 批准号:
    242560533
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Electron selfenergy in the superconducting pnictides:orbital dependence, anisotropy, temperature dependence and its relation with the phase diagram
超导磷族元素中的电子自能:轨道依赖性、各向异性、温度依赖性及其与相图的关系
  • 批准号:
    168211202
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Competing order parameters and flows into phases with broken symmetries
竞争顺序参数和流入对称性破缺的相
  • 批准号:
    35758572
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
Phenomenology of high-temperature superconducting cuprates: microscopic approach from weak coupling
高温超导铜酸盐现象学:弱耦合的微观方法
  • 批准号:
    19309356
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Units
Strong and weak coupling approaches to correlated electrons
相关电子的强耦合和弱耦合方法
  • 批准号:
    5346292
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Emmy Noether International Fellowships
Microscopic understanding of correlations in twisted van der Waals [hetero]structures
扭曲范德华[异质]结构中相关性的微观理解
  • 批准号:
    443273985
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

各向同性淬致无序环境中层列型液晶A-C相变
  • 批准号:
    11004241
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of functional-renormalization-group aided density functional theory as a novel method for many-body systems
泛函重正化群辅助密度泛函理论的发展作为多体系统的新方法
  • 批准号:
    20J00644
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Non-perturbative approximation schemes for the operator product expansion via the functional renormalization group
通过函数重正化群进行算子乘积展开的非微扰近似方案
  • 批准号:
    416523172
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ab initio nuclear Density Functional Theory with uncertainty quantification from Functional Renormalization Group in Kohn-Sham scheme
Kohn-Sham 方案中泛函重正化群的不确定性量化的从头算核密度泛函理论
  • 批准号:
    18K13549
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Merging of dynamical mean-field theory and functional renormalization group
动力学平均场理论与泛函重正化群的融合
  • 批准号:
    299305516
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional-renormalization-group analysis on strongly correalted spin, charge, and orbital systems
强相关自旋、电荷和轨道系统的函数重正化群分析
  • 批准号:
    16K05442
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ground-state Properties of Many-body Systems from a Renormalization-Group Approach to Density Functional Theory
从重整化群方法到密度泛函理论的多体系统的基态性质
  • 批准号:
    281808276
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Realistic effective interactions from the functional renormalization group
来自功能重正化群的现实有效相互作用
  • 批准号:
    267991720
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional renormalization group approach to low-energy effective interactions in multi-band many-fermion systems
多带多费米子系统中低能有效相互作用的功能重正化群方法
  • 批准号:
    245977134
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ground-state Properties of Nuclei from a Renormalization-Group Approach to Density Functional Theory (D01/Erg#)
从重正化群方法到密度泛函理论的原子核基态性质(D01/Suppl
  • 批准号:
    233768736
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Development of a functional renormalization group to treat interaction effects in strongly disordered electron systems
开发功能重正化群来处理强无序电子系统中的相互作用效应
  • 批准号:
    198431769
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了