Functional renormalization group approach to low-energy effective interactions in multi-band many-fermion systems

多带多费米子系统中低能有效相互作用的功能重正化群方法

基本信息

项目摘要

We propose to extend and apply a recently developed functional renormalization group (fRG) scheme to compute low-energy effective interactions in multiband many-fermion systems, where the effects of higher-energy bands are absorbed into the effective interactions in one or few low-energy band. This fRG scheme includes and extends the constrained-RPA (cRPA) approach that has been used fruitfully in many different material systems as a tool to compute the interaction parameters of extended Hubbard models for the description of the bands near the Fermi level. We argue that with the new fRG scheme, we can assess the validity of the cRPA by summing more than just a particular class of diagrams. A first application in a toy model (published in Phys. Rev. B) revealed that there are indeed parameter regimes where cRPA and the less ad-hoc fRG approach give different results, both with respect to the frequency structure of the effective interaction as well as regarding the average suppression of the bare repulsion. The current project now aims atimproving the implementation of the fRG scheme such that more realistic models can be tackled and that a more detailed picture of the effective interactions beyond cRPA can be obtained. The key ansatz that should allow us to treat realistic models is a suitable decomposition of the wavevector- and frequency dependence of the interactions that has previously been used for the study of one-band Hubbard and impurity models. We give feasibility arguments that the numerical effort is tractable using this decomposition. First applications will address models for graphene, for which we argue that a more refined determination of effective interaction parameters may be important for a correct and satisfactory description of correlation effects. For this project at the interface between methodical development in many-particle physics and key materials in current solid physics we request the funding of one Ph.D. positions for 36 months.
我们建议扩展和应用最近开发的泛函重整化群(fRG)计划来计算多带多费米子系统中的低能有效相互作用,其中高能量带的影响被吸收到一个或几个低能量带的有效相互作用。该fRG方案包括并扩展了约束RPA(cRPA)方法,该方法已在许多不同的材料系统中卓有成效地使用,作为一种工具来计算扩展的Hubbard模型的相互作用参数,用于描述费米能级附近的能带。我们认为,使用新的fRG方案,我们可以通过总结不仅仅是一类特定的图表来评估cRPA的有效性。玩具模型中的第一个应用(发表在Phys. Rev. B上)表明,确实存在参数机制,其中cRPA和较少的ad-hoc fRG方法给出了不同的结果,无论是在有效相互作用的频率结构方面还是在平均方面。裸排斥的抑制。目前的项目旨在改进fRG方案的实施,以便可以处理更现实的模型,并可以获得cRPA之外的有效相互作用的更详细的图片。关键的分析,应该让我们来对待现实的模型是一个合适的分解的波矢量和频率依赖的相互作用,以前已被用于研究的单波段哈伯德和杂质模型。我们给出了可行性参数,数值的努力是易于使用这种分解。第一个应用程序将解决模型的石墨烯,我们认为,一个更精细的确定有效的相互作用参数可能是重要的相关效应的正确和令人满意的描述。对于这个处于多粒子物理学的系统发展与当前固体物理学的关键材料之间的接口的项目,我们请求一名博士的资助36个月的职位。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-energy effective interactions beyond cRPA by the functional renormalization group
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Carsten Honerkamp其他文献

Professor Dr. Carsten Honerkamp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Carsten Honerkamp', 18)}}的其他基金

Functional renormalization group for fermions in three dimensions
三维费米子的功能重整化群
  • 批准号:
    289598096
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Interaction-driven groundstates of few-layer graphene
相互作用驱动的少层石墨烯基态
  • 批准号:
    242560533
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Electron selfenergy in the superconducting pnictides:orbital dependence, anisotropy, temperature dependence and its relation with the phase diagram
超导磷族元素中的电子自能:轨道依赖性、各向异性、温度依赖性及其与相图的关系
  • 批准号:
    168211202
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Competing order parameters and flows into phases with broken symmetries
竞争顺序参数和流入对称性破缺的相
  • 批准号:
    35758572
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
Phenomenology of high-temperature superconducting cuprates: microscopic approach from weak coupling
高温超导铜酸盐现象学:弱耦合的微观方法
  • 批准号:
    19309356
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Units
Strong and weak coupling approaches to correlated electrons
相关电子的强耦合和弱耦合方法
  • 批准号:
    5346292
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Emmy Noether International Fellowships
Microscopic understanding of correlations in twisted van der Waals [hetero]structures
扭曲范德华[异质]结构中相关性的微观理解
  • 批准号:
    443273985
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

各向同性淬致无序环境中层列型液晶A-C相变
  • 批准号:
    11004241
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of functional-renormalization-group aided density functional theory as a novel method for many-body systems
泛函重正化群辅助密度泛函理论的发展作为多体系统的新方法
  • 批准号:
    20J00644
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Non-perturbative approximation schemes for the operator product expansion via the functional renormalization group
通过函数重正化群进行算子乘积展开的非微扰近似方案
  • 批准号:
    416523172
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ab initio nuclear Density Functional Theory with uncertainty quantification from Functional Renormalization Group in Kohn-Sham scheme
Kohn-Sham 方案中泛函重正化群的不确定性量化的从头算核密度泛函理论
  • 批准号:
    18K13549
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Merging of dynamical mean-field theory and functional renormalization group
动力学平均场理论与泛函重正化群的融合
  • 批准号:
    299305516
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional-renormalization-group analysis on strongly correalted spin, charge, and orbital systems
强相关自旋、电荷和轨道系统的函数重正化群分析
  • 批准号:
    16K05442
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ground-state Properties of Many-body Systems from a Renormalization-Group Approach to Density Functional Theory
从重整化群方法到密度泛函理论的多体系统的基态性质
  • 批准号:
    281808276
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional renormalization group for fermions in three dimensions
三维费米子的功能重整化群
  • 批准号:
    289598096
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Realistic effective interactions from the functional renormalization group
来自功能重正化群的现实有效相互作用
  • 批准号:
    267991720
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ground-state Properties of Nuclei from a Renormalization-Group Approach to Density Functional Theory (D01/Erg#)
从重正化群方法到密度泛函理论的原子核基态性质(D01/Suppl
  • 批准号:
    233768736
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Development of a functional renormalization group to treat interaction effects in strongly disordered electron systems
开发功能重正化群来处理强无序电子系统中的相互作用效应
  • 批准号:
    198431769
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了