Research in Koebe Uniformization and Circle Packings
Koebe均匀化和圆形填料研究
基本信息
- 批准号:9622068
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-01 至 1998-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9622068 He This project lies in the interface of complex analysis, topology and geometry. It deals with conformal geometry and circle domains in the plane. Conformal mappings of relative circle domains generalize mappings induced from circle packings of the same combinatorial pattern. The investigator will try to determine whether classical results for circle packing maps hold for these generalized mappings as well. In addition, the investigator will study the following problem in topological fluid mechanics: estimate the lower bound for the energy of incompressible vector fields which are subject to deformations under some ideal physical condition. The circle packing and circle mapping problems are classical problems touching on several different branches of mathematics. For example, recently it was discovered that three-dimensional hyperbolic geometry involving negative curvature plays an important role in circle pattern and packing problems. Also, certain extremal packing problems and their higher dimensional analogs - whose solutions can be approximated with computer simulation - may have applications in industrial packing problems.
小行星9622068 这个项目在于复杂的分析,拓扑和几何的接口。它涉及共形几何和圆域在平面上。相对圆域的共形映射推广了由同一组合模式的圆填充导出的映射。研究人员将试图确定是否经典的结果,圈包装地图持有这些广义映射以及。此外,研究者将研究拓扑流体力学中的以下问题:估计在某些理想物理条件下受到变形的不可压缩向量场的能量下限。 圆填充和圆映射问题是涉及数学几个不同分支的经典问题。例如,最近发现,涉及负曲率的三维双曲几何在圆图案和填充问题中起着重要作用。此外,某些极值包装问题及其高维类似物-其解决方案可以近似与计算机模拟-可能有应用在工业包装问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng-Xu He其他文献
The asymptotic value of the circle-packing rigidity constants s n *
- DOI:
10.1007/bf02574369 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:0.600
- 作者:
P. Doyle;Zheng-Xu He;B. Rodin - 通讯作者:
B. Rodin
Characterizations of Noetherian and hereditary rings
- DOI:
10.1090/s0002-9939-1985-0773992-0 - 发表时间:
1985-03 - 期刊:
- 影响因子:0
- 作者:
Zheng-Xu He - 通讯作者:
Zheng-Xu He
On the distortion of relative circle domain isomorphisms
- DOI:
10.1007/bf02788140 - 发表时间:
1997-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Zheng-Xu He;Oded Schramm - 通讯作者:
Oded Schramm
Rigidity of infinite disk patterns
- DOI:
10.2307/121018 - 发表时间:
1999-01 - 期刊:
- 影响因子:4.9
- 作者:
Zheng-Xu He - 通讯作者:
Zheng-Xu He
State constrained control problems governed by variational inequalities
- DOI:
10.1137/0325061 - 发表时间:
1987-09 - 期刊:
- 影响因子:2.2
- 作者:
Zheng-Xu He - 通讯作者:
Zheng-Xu He
Zheng-Xu He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng-Xu He', 18)}}的其他基金
Geometry and Topology in Two and Three Dimensions
二维和三维几何和拓扑
- 批准号:
9803619 - 财政年份:1998
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Circle Packings, Quasiconformal Geometry and Complex Function Theory
数学科学:圆堆积、拟共形几何和复函数理论的研究
- 批准号:
9396227 - 财政年份:1993
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Circle Packings, Quasiconformal Geometry and Complex Function Theory
数学科学:圆堆积、拟共形几何和复函数理论的研究
- 批准号:
9204096 - 财政年份:1992
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Circle Packings, Quasiconformal Geometry and Low Dimensional Geometric Topology
数学科学:圆堆积、拟共形几何和低维几何拓扑研究
- 批准号:
9006954 - 财政年份:1990
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似海外基金
Numerical Conformal Mappings onto the Canonical Slit Domains Listed in Koebe (1916)
Koebe (1916) 中列出的规范狭缝域上的数值共形映射
- 批准号:
23540140 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)