Geometry and Topology in Two and Three Dimensions
二维和三维几何和拓扑
基本信息
- 批准号:9803619
- 负责人:
- 金额:$ 6.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9803619He Infinitesimal deformation of disk patterns in the plane can becharacterized by harmonic functions on an electric network that isobtained by a simple geometric construction. Properties of theelectrical network may be used to derive rigidity properties of diskpatterns. The technique may also be applied to prove characterizationsof three-dimensional convex hyperbolic polyhedra, generalizing bothAndreev's Theorem and a characterization theorem due to Hodgson andRivin. The investigator will explore relationships between thedeformation of disk patterns and that of three-dimensional hyperboliccone-manifolds, and study the applications of these results to otherfields. He will also continue the research on the Koebe uniformizationconjecture. The study of geometry and topology in two and three dimensions areintimately related. Many three-dimensional geometric topology problemsmay be reduced to problems in two dimensions, and geometric structuresmay be applied to solve topological problems. This project's researchon disk patterns, three-dimensional hyperbolic polyhedra, circledomains and disk packings, three-dimensional geometric structures andtheir applications, and on topological hydrodynamics, will contributeto a better understanding of the geometry and physics of our real world.It is also an interesting fact that geometric structures on manifoldscan be applied to yield information on their topology, and in turn theinformation on their topology may be used in some problems inhydrodynamics. There is a related study of Moebius energy of knots andlinks, where several most elementary questions remain unsolved. This isa field where theory and experiment meet well.***
小行星9803619 平面内圆盘图案的无穷小变形可以用一个电网络上的调和函数来表征,该电网络由简单的几何构造得到。 电网络的性质可以用来导出圆盘图案的刚性性质。 该技术也可用于证明三维凸双曲多面体的特征,推广Andreev定理和Hodgson和Rivin的特征定理。 研究者将探索盘斑图的变形与三维双曲锥流形的变形之间的关系,并研究这些结果在其他领域的应用。 他还将继续研究Koebe单值化猜想。 二维和三维的几何学和拓扑学的研究是密切相关的。 许多三维几何拓扑问题可以归结为二维问题,几何结构可以用来解决拓扑问题。 本计画对圆盘图案、三维双曲多面体、圆域与圆盘填充、三维几何结构及其应用、以及拓扑流体力学的研究,将有助于更好地了解我们真实的世界的几何与物理。而这些拓扑结构的信息又可用于流体力学中的某些问题。 有一个关于纽结和链环的莫比乌斯能量的相关研究,其中有几个最基本的问题仍然没有解决。这伊萨一个理论与实验相结合的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng-Xu He其他文献
The asymptotic value of the circle-packing rigidity constants s n *
- DOI:
10.1007/bf02574369 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:0.600
- 作者:
P. Doyle;Zheng-Xu He;B. Rodin - 通讯作者:
B. Rodin
Characterizations of Noetherian and hereditary rings
- DOI:
10.1090/s0002-9939-1985-0773992-0 - 发表时间:
1985-03 - 期刊:
- 影响因子:0
- 作者:
Zheng-Xu He - 通讯作者:
Zheng-Xu He
On the distortion of relative circle domain isomorphisms
- DOI:
10.1007/bf02788140 - 发表时间:
1997-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Zheng-Xu He;Oded Schramm - 通讯作者:
Oded Schramm
State constrained control problems governed by variational inequalities
- DOI:
10.1137/0325061 - 发表时间:
1987-09 - 期刊:
- 影响因子:2.2
- 作者:
Zheng-Xu He - 通讯作者:
Zheng-Xu He
Rigidity of infinite disk patterns
- DOI:
10.2307/121018 - 发表时间:
1999-01 - 期刊:
- 影响因子:4.9
- 作者:
Zheng-Xu He - 通讯作者:
Zheng-Xu He
Zheng-Xu He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheng-Xu He', 18)}}的其他基金
Research in Koebe Uniformization and Circle Packings
Koebe均匀化和圆形填料研究
- 批准号:
9622068 - 财政年份:1996
- 资助金额:
$ 6.78万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research in Circle Packings, Quasiconformal Geometry and Complex Function Theory
数学科学:圆堆积、拟共形几何和复函数理论的研究
- 批准号:
9396227 - 财政年份:1993
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Circle Packings, Quasiconformal Geometry and Complex Function Theory
数学科学:圆堆积、拟共形几何和复函数理论的研究
- 批准号:
9204096 - 财政年份:1992
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Circle Packings, Quasiconformal Geometry and Low Dimensional Geometric Topology
数学科学:圆堆积、拟共形几何和低维几何拓扑研究
- 批准号:
9006954 - 财政年份:1990
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
- 批准号:
2341204 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Standard Grant
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
- 批准号:
DP240101084 - 财政年份:2024
- 资助金额:
$ 6.78万 - 项目类别:
Discovery Projects