Automated Theorem Proving in Type Theory

类型论中的自动定理证明

基本信息

  • 批准号:
    9624683
  • 负责人:
  • 金额:
    $ 13.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-15 至 1999-07-31
  • 项目状态:
    已结题

项目摘要

This research is concerned with automated theorem proving in type theory, which is also known as higher-order logic. The basic purpose of this research is to automate and facilitate the use of rigorous logic. Rigorous reasoning plays (or should play) an important role in a wide variety of intellectual endeavors, and computerized systems which facilitate the use of logic have many important potential applications. The focus of this research is on proving theorems of a formulation of higher-order logic known as the typed lambda-calculus. This formal language includes first-order logic, but in a practical sense it has greater expressive power, and it is particularly well suited to the formalization of mathematics and other disciplines and to specifying and verifying hardware and software. Part of this research involves continued development of an existing computerized theorem proving system called TPS, which can be used to construct and check formal proofs (in natural deduction style) interactively, semi-automatically, and automatically. In automatic mode, TPS first searches for an expansion proof, which expresses in a nonredundant way the fundamental logical structure of proofs of the theorem in a variety of styles, and then transforms this into a proof in natural deduction style. The interactive commands for applying rules of inference are available in a related program called ETPS (Educational Theorem Proving System), which is used interactively by students in logic courses to construct natural deduction proofs. The possibility of using TPS in a mixture of automatic and interactive modes makes it an attractive tool for working on complex logical problems in a variety of disciplines. Research will continue on methods of searching for expansion proofs, methods of translating back and forth between expansion proofs and natural deduction proofs, on higher-order unification, on enhancement of TPS as a useful logical tool, and on related problems and question s. ***
本研究关注类型论中的自动定理证明,也称为高阶逻辑。 这项研究的基本目的是自动化和促进严格逻辑的使用。 严格的推理在各种各样的智力活动中起着(或应该起着)重要的作用,而促进逻辑使用的计算机化系统具有许多重要的潜在应用。 这项研究的重点是证明定理的制定高阶逻辑称为类型的微积分。这种形式语言包括一阶逻辑,但在实际意义上,它具有更强的表达能力,特别适合于数学和其他学科的形式化,以及指定和验证硬件和软件。 这项研究的一部分涉及继续发展现有的计算机化定理证明系统称为TPS,它可以用来构造和检查形式证明(自然演绎风格)交互式,半自动和自动。 在自动模式下,TPS首先搜索一个扩展证明,它以非冗余的方式表达了定理的各种风格的证明的基本逻辑结构,然后将其转换为自然演绎风格的证明。应用推理规则的交互式命令可以在一个名为ETPS(教育定理证明系统)的相关程序中使用,该程序可供逻辑课程中的学生交互使用,以构建自然演绎证明。在自动和交互模式的混合中使用TPS的可能性使其成为在各种学科中处理复杂逻辑问题的有吸引力的工具。 研究将继续寻找扩展证明的方法,在扩展证明和自然演绎证明之间来回转换的方法,高阶统一,加强TPS作为一个有用的逻辑工具,以及相关的问题和问题。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Andrews其他文献

Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocence, Tanzania).
Olduvai Bed-I(更新世,坦桑尼亚)的埋藏学和古生态学。
  • DOI:
    10.1006/jhev.1997.0188
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Y. Fernández;Y. Fernández;Christiane Denys;Peter Andrews;T. Williams;Y. Dauphin;Louise T. Humphrey
  • 通讯作者:
    Louise T. Humphrey
101 uses for fossilized faeces
101 种化石粪便的用途
  • DOI:
    10.1038/31356
  • 发表时间:
    1998-06-18
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Andrews;Yolanda Fernandez-Jalvo
  • 通讯作者:
    Yolanda Fernandez-Jalvo
Year in review in intensive care medicine, 2004. III. Outcome, ICU organisation, scoring, quality of life, ethics, psychological problems and communication in the ICU, immunity and hemodynamics during sepsis, pediatric and neonatal critical care, experimental studies
  • DOI:
    10.1007/s00134-005-2573-9
  • 发表时间:
    2005-02-18
  • 期刊:
  • 影响因子:
    21.200
  • 作者:
    Peter Andrews;Elie Azoulay;Massimo Antonelli;Laurent Brochard;Christian Brun-Buisson;Geoffrey Dobb;Jean-Yves Fagon;Herwig Gerlach;Johan Groeneveld;Jordi Mancebo;Philipp Metnitz;Stefano Nava;Jerome Pugin;Michael Pinsky;Peter Radermacher;Christian Richard;Robert Tasker;Benoit Vallet
  • 通讯作者:
    Benoit Vallet
Patient Experience and Preferences for the Assessment of Olfaction: The Patient International Clinical Assessment of Smell Survey
患者嗅觉评估的经验和偏好:患者国际嗅觉临床评估调查
International clinical assessment of smell: An international, cross‐sectional survey of current practice in the assessment of olfaction
国际嗅觉临床评估:对嗅觉评估当前实践的国际横断面调查
  • DOI:
    10.1111/coa.14123
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    K. Whitcroft;I. Alobid;A. Altundağ;Peter Andrews;Sean Carrie;Miriam Fahmy;A. Fjaeldstad;Simon Gane;Claire Hopkins;J. W. Hsieh;C. Huart;T. Hummel;I. Konstantinidis;Baslie N Landis;E. Mori;J. Mullol;Carl Philpott;Aristotelis Poulios;Jan Vodička;Victoria M Ward
  • 通讯作者:
    Victoria M Ward

Peter Andrews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Andrews', 18)}}的其他基金

Automated Theorem Proving in Type Theory
类型论中的自动定理证明
  • 批准号:
    0097179
  • 财政年份:
    2001
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Standard Grant
Automated Theorem in Proving in Type Theory
类型论证明中的自动定理
  • 批准号:
    9732312
  • 财政年份:
    1998
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Standard Grant
Computer Laboratory for Mathematics Education Instruction
数学教育教学计算机实验室
  • 批准号:
    9350991
  • 财政年份:
    1993
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Standard Grant
Lambda-Calculus, Type Theory, and Automated Theorem Proving
Lambda 微积分、类型论和自动定理证明
  • 批准号:
    9201893
  • 财政年份:
    1992
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Continuing Grant
Lambda-Calculus, Type Theory, and Autmated Theorem Proving
Lambda 微积分、类型论和自动定理证明
  • 批准号:
    9002546
  • 财政年份:
    1990
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Continuing Grant
Lamdba-Calculus, Type Theory, and Automated Theorem Proving
Lamdba 微积分、类型论和自动定理证明
  • 批准号:
    8702699
  • 财政年份:
    1987
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Continuing Grant
Automated Theorem Proving in Type Theory (Computer Research)
类型论中的自动定理证明(计算机研究)
  • 批准号:
    8402532
  • 财政年份:
    1984
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Continuing Grant
Automated Theorem Proving in Type Theory
类型论中的自动定理证明
  • 批准号:
    8102870
  • 财政年份:
    1981
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Continuing Grant
Automatic Theorem Proving in Type Theory
类型论中的自动定理证明
  • 批准号:
    7801462
  • 财政年份:
    1978
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Continuing Grant
Proof Procedures in Predicate Calculus and Type Theory
谓词演算和类型论中的证明过程
  • 批准号:
    7101953
  • 财政年份:
    1971
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Standard Grant

相似海外基金

Automated Theorem Proving for Infinite Term Rewriting Systems
无限项重写系统的自动定理证明
  • 批准号:
    22K11904
  • 财政年份:
    2022
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SHF: Small: Synergy between Automated Reasoning and Interactive Theorem Proving
SHF:小:自动推理和交互式定理证明之间的协同作用
  • 批准号:
    2229099
  • 财政年份:
    2022
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Standard Grant
Can Computer be a Mathematician? Automated Theorem Proving in Undergraduate Mathematics
计算机可以成为数学家吗?
  • 批准号:
    20K11679
  • 财政年份:
    2020
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine Learning in Automated Theorem Proving
自动定理证明中的机器学习
  • 批准号:
    2119928
  • 财政年份:
    2019
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Studentship
Automated Theorem Proving with Machine Learning for Automating Mathematics
使用机器学习自动证明数学自动化
  • 批准号:
    19K22842
  • 财政年份:
    2019
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Improvement of lemma generation and reasoning strategies for automated inductive theorem proving
自动归纳定理证明的引理生成和推理策略的改进
  • 批准号:
    16K16032
  • 财政年份:
    2016
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Machine Learning for Automated Theorem Proving
用于自动定理证明的机器学习
  • 批准号:
    1788755
  • 财政年份:
    2016
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Studentship
CI-EN: SystemOnTPTP - Online Services for Automated Theorem Proving in Classical Logic
CI-EN:SystemOnTPTP - 经典逻辑自动定理证明在线服务
  • 批准号:
    1405674
  • 财政年份:
    2014
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Standard Grant
Effective Higher-Order Automated Theorem Proving
有效的高阶自动定理证明
  • 批准号:
    241609402
  • 财政年份:
    2014
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Research Grants
Formal verification of analog and mixed signal systems using automated theorem proving
使用自动定理证明对模拟和混合信号系统进行形式验证
  • 批准号:
    391924-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 13.14万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了