Machine Learning in Automated Theorem Proving
自动定理证明中的机器学习
基本信息
- 批准号:2119928
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reasoning is an essential component of a general intelligence, but has proven difficult to fully automate. Interactive provers that assist a human expert are still more prevalent than a successful fully-automated proof search. However, in the last years fully-automated Machine Learning methods set state-of-the-art results in several reasoning challenges that used to require human supervision and handcrafted feature engineering, e.g. machine translation (Wu et al., 2016), visual question answering (Kahou et al., 2017), reasoning on algorithmic tasks (Zaremba et al., 2014), and excelling at abstract strategy games (Silver et al., 2016). Some of these tasks draw similarities to the main bottlenecks in the ATP. For instance, the choice of the winning strategy in a game as well as decisions required to prove a theorem can be similarly modelled as search problems. My goal will be to address these challenges by developing new approaches to fill the gaps in ATP using Machine Learning.The challenges in ATP that traditionally require human supervision are posed, for instance, by selection of the most useful mathematical statements to prove a conjecture (premise selection), the choice of an optimal strategy for a proof search (heuristic selection), or semantically relevant translation of a mathematical content (e.g. expressed in LaTeX) to the formal language of a prover (auto-formalization). Modern Machine Learning methods have been recently applied to all of the problems mentioned, and yielded promising results, for instance (Alemi et al., 2017) and (Bridge et al., 2014). Based on the state-of-the-art research, I would like to explore the combination of employing Reinforcement Learning methods to guide a proof search, and powerful learning algorithms such as Deep Neural Networks to extract the most relevant features, and to restrict the search space for the decision process. There is a potential to make a significant progress in the research on semantically accurate representations of the mathematical statements. I would like to contribute to the ATP landscape by developing new methods at the interface of Neural Networks and Natural Language Processing, including graph embeddings that are the most natural way of representing mathematical formulae. In particular, I would like to investigate the more expressive Higher-order logic, using an open-source dataset released for the evaluation of new Machine Learning-based theorem proving methods (Kaliszyk et al., 2017).In conclusion, I strive to improve the automation of theorem proving by using the most promising advances in Machine Learning. Performing the proposed research thanks to the EPSRC studentship will allow me to contribute to the key aspect of artificial intelligence, as well as to the applied fields that employ ATP, notably to the safety-critical software and hardware design. Moreover, this research aims at showing steps towards a better understanding and development of generally applicable Machine Learning methods.
推理是一般智能的重要组成部分,但事实证明很难实现完全自动化。辅助人类专家的交互式证明仍然比成功的全自动证明搜索更普遍。然而,在过去的几年里,全自动机器学习方法在一些需要人类监督和手工特征工程的推理挑战中取得了最先进的结果,例如机器翻译(Wu等人,2016),视觉问答(Kahou等人,2017),算法任务推理(Zaremba等人,2014),以及擅长抽象策略游戏(Silver等人,2016)。其中一些任务与ATP中的主要瓶颈有相似之处。例如,在游戏中获胜策略的选择以及证明定理所需的决策可以类似地建模为搜索问题。我的目标是通过开发新的方法来解决这些挑战,利用机器学习来填补ATP的空白。ATP中传统上需要人类监督的挑战是,例如,通过选择最有用的数学陈述来证明猜想(前提选择),选择最优的证明搜索策略(启发式选择),或将数学内容(例如用LaTeX表示)翻译为证明者的形式语言(自动形式化)。现代机器学习方法最近已应用于上述所有问题,并产生了有希望的结果,例如(Alemi等人,2017)和(Bridge等人,2014)。基于最新的研究,我想探索结合使用强化学习方法来指导证明搜索,并使用强大的学习算法(如深度神经网络)来提取最相关的特征,并限制决策过程的搜索空间。在数学命题的语义准确表示方面的研究有可能取得重大进展。我想通过开发神经网络和自然语言处理接口的新方法,包括图嵌入,这是表示数学公式的最自然的方式,为ATP领域做出贡献。特别是,我想研究更具表现力的高阶逻辑,使用开源数据集来评估新的基于机器学习的定理证明方法(Kaliszyk et al., 2017)。总之,我努力通过使用机器学习中最有前途的进展来提高定理证明的自动化。通过EPSRC的奖学金,我可以为人工智能的关键方面以及使用ATP的应用领域,特别是安全关键的软件和硬件设计做出贡献。此外,本研究旨在展示更好地理解和开发普遍适用的机器学习方法的步骤。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Function Modules with Sparse Arguments: A Dynamic Approach to Integrating Information across Layers
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Alex Lamb;Anirudh Goyal;A. Slowik;M. Mozer;Philippe Beaudoin;Y. Bengio
- 通讯作者:Alex Lamb;Anirudh Goyal;A. Slowik;M. Mozer;Philippe Beaudoin;Y. Bengio
Bayesian Optimisation for Heuristic Configuration in Automated Theorem Proving
自动定理证明中启发式配置的贝叶斯优化
- DOI:10.29007/q91g
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Slowik A
- 通讯作者:Slowik A
Bayesian Optimisation for Premise Selection in Automated Theorem Proving (Student Abstract)
自动定理证明中前提选择的贝叶斯优化(学生摘要)
- DOI:10.1609/aaai.v34i10.7232
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Slowik A
- 通讯作者:Slowik A
Out-of-distribution generalisation in machine learning
机器学习中的分布外泛化
- DOI:10.17863/cam.101537
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Slowik A
- 通讯作者:Slowik A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Automated analysis of volcano imagery with machine learning techniques
利用机器学习技术自动分析火山图像
- 批准号:
2908452 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
- 批准号:
10064479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Decoding glacial landscapes using automated geomorphological mapping and machine learning
使用自动地貌测绘和机器学习解码冰川景观
- 批准号:
2863174 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Automated Flow Synthesis: In-Line Reaction Monitoring and Machine Learning for the Optimisation of Continuous Flow Photocatalytic Reactions
自动流动合成:用于优化连续流动光催化反应的在线反应监测和机器学习
- 批准号:
2894726 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Automated Sonographic Detection of Pulmonary Embolism Using Machine Learning Algorithm
使用机器学习算法自动超声检测肺栓塞
- 批准号:
10741242 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studies in machine learning and robotics for automated construction
用于自动化施工的机器学习和机器人技术研究
- 批准号:
2891648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
- 批准号:
10662053 - 财政年份:2023
- 资助金额:
-- - 项目类别: