Mathematical Sciences: Nonlinear Demographic Dynamics: Mathematical Models, Biological Experiments, and Data Analyses
数学科学:非线性人口动态:数学模型、生物实验和数据分析
基本信息
- 批准号:9625576
- 负责人:
- 金额:$ 35.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-15 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9625576 Cushing A central question in population biology is that of understanding and explaining observed fluctuations in animal numbers. The study of nonlinear dynamics has opened the way to a new phase of population research in which experiments are focused directly on phenomena such as equilibria, periodic and aperiodic cycles, and chaos. The investigators undertake a spectrum of activities essential to the testing of nonlinear population theory: from the translation of biology into the formal language of mathematics, to the analysis of mathematical models, to the development and application of statistical techniques for the analysis of data, to the design and implementation of biological experiments. Laboratory populations of flour beetles of the genus Tribolium are used in the experiments. By means of their studies the investigators provide rigorous experimental tests of nonlinear population phenomena and behavior. These include: (1) dynamical transitions from stable equilibria, to invariant loops (aperiodicities), to period locking, to strange attractors and chaos; (2) transient and intermittent dynamics with aims towards defining practical concepts of intermittency for use with stochastic population models and the testing of some of the unusual transient behaviors forecast by stochastic nonlinear models; (3) the dynamics of meta-populations using beetle populations linked by migration; and (4) the dynamical behaviors that can be produced by the interaction of environmental periodicities with nonlinear demographic effects. The investigators study how biological populations (in particular, populations of insects) fluctuate in time and how different circumstances can lead to drastically different, and sometimes unexpected, changes in these fluctuations. This study is carried out by means of an interdisciplinary program that integrates the use of sophisticated mathematical models and statistical analysis with the design and implementation of l aboratory experiments using species of beetles that are economically important insect pests. The investigators seek to describe and explain a variety of patterns in population fluctuations, ranging from those that are regular and predictable to those that are irregular and "chaotic." They seek to understand the environmental conditions that give rise to these various kinds of population behavior. This understanding is essential if the impact on biological populations of environmental perturbations and manipulations (by Man or by Nature) is to be predicted. These impacts have far-reaching consequences, ranging from food production and pest control to wildlife management and the conservation of species diversity.
9625576库欣 种群生物学的一个中心问题是理解和解释观察到的动物数量波动。 非线性动力学的研究开辟了一条道路,人口研究的一个新阶段,实验直接集中在现象,如平衡,周期和非周期循环,混沌。 研究人员进行一系列对非线性种群理论测试至关重要的活动:从生物学翻译成数学的正式语言,到数学模型的分析,到数据分析统计技术的开发和应用,到生物实验的设计和实施。 实验中使用拟谷盗属的面粉甲虫的实验室种群。 通过他们的研究,研究人员提供了严格的实验测试的非线性人口现象和行为。 其中包括:(1)从稳定平衡到不变循环的动态转变(2)瞬态和间歇动力学,旨在定义与随机种群模型一起使用的非周期性的实用概念,并测试随机非线性模型预测的一些不寻常的瞬态行为;(3)以迁移为纽带的甲虫种群的集合种群动态;(4)环境周期性与非线性人口效应相互作用所产生的动态行为。 研究人员研究生物种群(特别是昆虫种群)如何随时间波动,以及不同的环境如何导致这些波动发生截然不同的变化,有时甚至是意想不到的变化。 这项研究是通过一个跨学科的计划,集成了复杂的数学模型和统计分析的设计和实验室实验的实施,使用甲虫的物种,是经济上重要的害虫。 研究人员试图描述和解释人口波动的各种模式,从有规律的和可预测的到无规律的和“混乱的”。“他们试图了解引起这些不同种类的人口行为的环境条件。 如果要预测环境扰动和操纵(人为或自然)对生物种群的影响,这种理解是必不可少的。 这些影响具有深远的后果,从粮食生产和虫害防治到野生动物管理和物种多样性保护。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jim Cushing其他文献
Jim Cushing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jim Cushing', 18)}}的其他基金
The Sixth International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
第六届生物系统群体数学建模与分析国际会议
- 批准号:
1743497 - 财政年份:2017
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Collaborative Research: Climate Change, Cannibalism, and Reproductive Synchrony: The Effect of Food Shortages on Life History Strategies of Marine Organisms
合作研究:气候变化、同类相食和繁殖同步:食物短缺对海洋生物生命史策略的影响
- 批准号:
1407564 - 财政年份:2014
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
The Dynamics and Evolution of Semelparity
Semelparity的动态和演变
- 批准号:
0917435 - 财政年份:2009
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Competitive coexistence and life cycle stages
竞争共存和生命周期阶段
- 批准号:
0414212 - 财政年份:2004
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
QEIB: Stochastic Nonlinear Population Dynamics: Mathematical Models, Biological Experiments, and Data Analyses
QEIB:随机非线性种群动态:数学模型、生物学实验和数据分析
- 批准号:
0210474 - 财政年份:2002
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Population Dynamics: Mathematical Models, Biological Experiments, and Data Analyses
合作研究:非线性种群动态:数学模型、生物学实验和数据分析
- 批准号:
9973126 - 财政年份:1999
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Nonlinear Demographic Dynamics: Mathematical Models, Biological Experiments, Data Analyses
合作研究:非线性人口动态:数学模型、生物学实验、数据分析
- 批准号:
9306271 - 财政年份:1993
- 资助金额:
$ 35.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Structured Growth Dynamics
数学科学:非线性结构增长动力学
- 批准号:
8902508 - 财政年份:1989
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Strucured Growth Dynamics
数学科学:非线性结构增长动力学
- 批准号:
8714810 - 财政年份:1988
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Structured Growth Dynamics
数学科学:非线性结构增长动力学
- 批准号:
8601899 - 财政年份:1986
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
- 批准号:
1240744 - 财政年份:2012
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis - Spring 2010
CBMS 数学科学区域会议 - 非线性水波及其在波流相互作用和海啸中的应用 - 2010 年春季
- 批准号:
0938266 - 财政年份:2010
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
- 批准号:
0630571 - 财政年份:2007
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Nonlinear Dispersive and Wave Equations
NSF/CBMS 数学科学区域会议:非线性色散和波动方程
- 批准号:
0440945 - 财政年份:2005
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Mathematical Methods in Nonlinear Wave Propagation - May 13-17, 2002
NSF/CBMS 数学科学区域会议 - 非线性波传播的数学方法 - 2002 年 5 月 13-17 日
- 批准号:
0122208 - 财政年份:2002
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations & Their Applications to Evolving Surfaces, Phase Transitions & Stochastic Control
数学科学:非线性偏微分方程
- 批准号:
9817525 - 财政年份:1998
- 资助金额:
$ 35.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Elliptic Equations in Differential Geometry
数学科学:微分几何中的非线性椭圆方程
- 批准号:
9704861 - 财政年份:1997
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Interface Dynamics and Renormalization Methods for Nonlinear Systems of Equations
数学科学:非线性方程组的界面动力学和重整化方法
- 批准号:
9703530 - 财政年份:1997
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
- 批准号:
9796164 - 财政年份:1997
- 资助金额:
$ 35.5万 - 项目类别:
Standard Grant














{{item.name}}会员




