QEIB: Stochastic Nonlinear Population Dynamics: Mathematical Models, Biological Experiments, and Data Analyses
QEIB:随机非线性种群动态:数学模型、生物学实验和数据分析
基本信息
- 批准号:0210474
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cushing0210474 The project entails a theoretical and experimental studythat examines nonlinear population dynamics phenomena in thecontext of stochasticity and that addresses fundamental conceptsof how stochastic and nonlinear forces combine to produceobserved population phenomena. The methodology involves aninterdisciplinary effort that features a thorough integration ofbiologically based modeling (deterministic and stochastic),mathematical and numerical analyses of model dynamics, and thederivation and application of statistical techniques forconnecting models with data (including parameter estimation andmodel evaluation). The investigators study the fundamentalquestion about how (demographic) stochasticity at the individuallevel propagates to the population level. A promising class ofmodels that incorporates both demographic and environmentalstochasticity is pursued. A variety of statistical andmathematical questions that arise from these studies areinvestigated. The validity of this modeling methodology andaccuracy of a priori model predictions is directly testable byexperiments. The project study includes an experimental test ofthis modeling approach to demographic and environmentalstochasticity, using a laboratory model that the investigatorshave successfully used in a wide variety of population dynamicsand modeling studies during the last decade. The modelingmethodology is also applicable to field populations and theinvestigators pursue the development of field studies withseveral researchers who have expressed interest in such acollaboration. These collaborators include colleagues at (1) theCenter for Environmental Analysis at California State University,Los Angeles in a project modeling the spatially structureddynamics of seashore species, (2) the University of California,Davis in a project to model a lupine-caterpillar-nematode system,(3) Andrews University on mathematical/statistical models of thedistribution of marine birds and mammals on Protection IslandNational Wildlife Refuge in the Strait of Juan de Fuca, and (4)the Virginia Institute of Marine Science on nonlinear models ofthe blue crab in the Exuma Cays. An understanding of the dynamics of biological populationsis fundamental to the understanding of ecological andenvironmental problems. Mathematical models can be a valuabletool that provides this understanding. They can also provide themeans to predict the future of ecosystems and the species thatthey include. An accurate descriptive and predictive capabilitygained through mathematical models provides not only a basicunderstanding of ecological problems, but also the ability todesign programs for the assessment, management, and control ofecosystems and for the solution of environmental problems. Afundamental difficulty in the application of mathematical modelsto ecological problems has been the lack of a close connection ofmodels with biological data. A key problem is the ability ofmodels to incorporate random effects and disturbances. Theinvestigators extend, analyze, and apply a modeling methodologythey have developed during a decade of experimental studies, in acontrolled laboratory setting, that addresses these difficulties.The methods are not restricted to laboratory populations,however, and the project also includes collaborations with newcolleagues for the purpose of applying the methods to fieldstudies of natural populations.
库欣0210474 该项目需要一个理论和实验研究,探讨非线性人口动态现象的背景下的随机性和地址的基本概念如何随机和非线性力联合收割机生产观察到的人口现象。 该方法涉及一个跨学科的努力,其特点是生物学为基础的建模(确定性和随机性),数学和模型动力学的数值分析,并推导和应用统计技术连接模型与数据(包括参数估计和模型评估)的彻底整合。 研究者们研究的基本问题是,个体水平的随机性如何传播到群体水平。 一个有前途的类ofmodels,结合人口和环境的随机性追求。 从这些研究中产生的各种统计和数学问题进行了调查。 这种建模方法的有效性和先验模型预测的准确性是直接通过实验测试。 该项目研究包括对人口和环境随机性的这种建模方法的实验测试,使用的实验室模型在过去十年中已成功地用于各种人口动态和建模研究。 建模方法也适用于现场人口和调查人员追求的发展领域的研究与几个研究人员谁表示有兴趣在这样一个集体。 这些合作者包括(1)洛杉矶加州州立大学环境分析中心的同事,他们的项目是模拟海滨物种的空间结构动力学,(2)加州大学戴维斯分校的同事,他们的项目是模拟羽扇豆-毛虫-线虫系统,(3)安德鲁斯大学数学/胡安德富卡海峡保护岛国家野生动物保护区海洋鸟类和哺乳动物分布的统计模型,(4)弗吉尼亚海洋科学研究所关于埃克苏马礁蓝蟹非线性模型的研究。 理解生物种群的动态是理解生态和环境问题的基础。 数学模型可以是一个有价值的工具,提供这种理解。 它们还可以提供方法来预测生态系统和其中包含的物种的未来。 通过数学模型获得的准确描述和预测能力不仅提供了对生态问题的基本理解,而且还提供了设计评估、管理和控制生态系统以及解决环境问题的方案的能力。 数学模型应用于生态学问题的一个基本困难是模型与生物学数据之间缺乏密切的联系。 一个关键问题是模型纳入随机效应和干扰的能力。 研究人员扩展、分析和应用了他们在受控实验室环境中进行的十年实验研究中开发的一种建模方法,该方法解决了这些困难。然而,该方法并不局限于实验室人群,该项目还包括与新同事的合作,目的是将该方法应用于自然人群的实地研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jim Cushing其他文献
Jim Cushing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jim Cushing', 18)}}的其他基金
The Sixth International Conference on Mathematical Modeling and Analysis of Populations in Biological Systems
第六届生物系统群体数学建模与分析国际会议
- 批准号:
1743497 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Climate Change, Cannibalism, and Reproductive Synchrony: The Effect of Food Shortages on Life History Strategies of Marine Organisms
合作研究:气候变化、同类相食和繁殖同步:食物短缺对海洋生物生命史策略的影响
- 批准号:
1407564 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
The Dynamics and Evolution of Semelparity
Semelparity的动态和演变
- 批准号:
0917435 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Competitive coexistence and life cycle stages
竞争共存和生命周期阶段
- 批准号:
0414212 - 财政年份:2004
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Population Dynamics: Mathematical Models, Biological Experiments, and Data Analyses
合作研究:非线性种群动态:数学模型、生物学实验和数据分析
- 批准号:
9973126 - 财政年份:1999
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Demographic Dynamics: Mathematical Models, Biological Experiments, and Data Analyses
数学科学:非线性人口动态:数学模型、生物实验和数据分析
- 批准号:
9625576 - 财政年份:1996
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Nonlinear Demographic Dynamics: Mathematical Models, Biological Experiments, Data Analyses
合作研究:非线性人口动态:数学模型、生物学实验、数据分析
- 批准号:
9306271 - 财政年份:1993
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Structured Growth Dynamics
数学科学:非线性结构增长动力学
- 批准号:
8902508 - 财政年份:1989
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Strucured Growth Dynamics
数学科学:非线性结构增长动力学
- 批准号:
8714810 - 财政年份:1988
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Structured Growth Dynamics
数学科学:非线性结构增长动力学
- 批准号:
8601899 - 财政年份:1986
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Parameterization and Reduction for Nonlinear Stochastic Systems with Applications to Fluid Dynamics
非线性随机系统的参数化和简化及其在流体动力学中的应用
- 批准号:
2108856 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Analysis of stochastic chaos in nonlinear stochastic differential equations and its applications
非线性随机微分方程中的随机混沌分析及其应用
- 批准号:
21H01002 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
- 批准号:
RGPIN-2016-05405 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of singular stochastic nonlinear dispersive PDEs
奇异随机非线性色散偏微分方程的动力学
- 批准号:
EP/V003178/1 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Stochastic Thermodynamics of Nonlinear Quantum Systems
非线性量子系统的随机热力学
- 批准号:
2010127 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Determining Degrees of Freedom in Nonlinear Complex Systems: Deterministic and Stochastic Applications
确定非线性复杂系统中的自由度:确定性和随机应用
- 批准号:
2009859 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
- 批准号:
2012414 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: The Nonlinear Stochastic Dynamics of Micro and Nanomechanical Systems
合作研究:微纳机械系统的非线性随机动力学
- 批准号:
2001403 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant