Clustered Subsampling of Double Sampling for Stratification and Growth Model Based Updates of Past Forest Inventories

基于过去森林清查分层和生长模型更新的双采样的聚类子采样

基本信息

项目摘要

Double Sampling for Stratification is a sampling design that is widely used for forest and resource inventories worldwide and, particularly, well established for periodic forest inventories of districts in public and private forests in Germany. Spatially clustered subsampling of second-phase units, actually representing a third phase of sampling, can be expected to reduce travelling costs, but will also decrease precision of estimates. Therefore, the proposed project is intended to develop estimators for totals and per hectare values of usual target variables in forest inventories as well as related sampling errors under that new three-phase sampling design. Using real data the trade-off between precision and amount of clustering will be analyzed. A special focus will be on temporary regional or state-wide inventories based on previous double sampling district inventories. In this case additional precision can be gained by updating the previous inventories using growth models. These growth predictions shall be combined with the sample based estimator to form a composite estimator of higher precision.
分层的双重抽样是一种抽样设计,广泛用于世界各地的森林和资源清查,特别是在德国公共和私人林区的定期森林清查中得到了很好的应用。第二阶段单位的空间分组抽样实际上代表了第三阶段的抽样,可望减少差旅费用,但也会降低估计的精度。因此,拟议项目的目的是在新的三阶段抽样设计下,编制森林清单中常见目标变量的总数和每公顷值以及相关抽样误差的估计值。使用真实数据,将分析聚类精度和聚类量之间的权衡。一个特别的重点将是基于以前的双重抽样地区库存的临时区域或全州库存。在这种情况下,可以通过使用增长模型更新以前的库存来获得更高的精度。这些增长预测应与基于样本的估计值相结合,以形成精度更高的综合估计值。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A three-phase sampling procedure for continuous forest inventory with partial re-measurement and updating of terrestrial sample plots
连续森林清查的三阶段抽样程序,部分重新测量和更新陆地样地
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Joachim Saborowski其他文献

Professor Dr. Joachim Saborowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Joachim Saborowski', 18)}}的其他基金

Entwicklung eines Point Transect-Verfahrens zur Schätzung des Vorkommens von Totholz in Wäldern
开发用于估计森林中枯木发生率的点样线方法
  • 批准号:
    68257425
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bedingte Vorhersagefehler für Punkt- und Flächenvorhersagen bei Stichprobeninventuren im Wald
森林抽样调查中点和面预测的条件预测误差
  • 批准号:
    5425436
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spatial precision of Kriging methods for sample data in forestry
林业样本数据克里金法的空间精度
  • 批准号:
    5271906
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CIF: Small: Statistically Optimal Subsampling for Big Data and Rare Events Data
CIF:小:大数据和稀有事件数据的统计最佳子采样
  • 批准号:
    2105571
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Subsampling Methods and Distribution Free Learning with Relational Data
关系数据的子采样方法和分布自由学习
  • 批准号:
    516999-2018
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    DGECR-2018-00355
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
  • 批准号:
    RGPIN-2018-04451
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Subsampling Methods and Distribution Free Learning with Relational Data
关系数据的子采样方法和分布自由学习
  • 批准号:
    516999-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了