Visualizing Learned Models and Data for Exploratory Machine Learning

可视化学习模型和数据以进行探索性机器学习

基本信息

  • 批准号:
    9625726
  • 负责人:
  • 金额:
    $ 15.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-07-15 至 1998-11-03
  • 项目状态:
    已结题

项目摘要

Visualizing Machine Learning Models and Data Choosing an appropriate model for the data or changing an existing model are both essential, but difficult steps in machine learning. Surprisingly, the trend in machine learning research has been to ignore that wonderful visual information processor--the human--and to build learning systems that are stand-alone and fully automated. This research is attempting to show that machine learning is a task best shared by humans and machine because of their unique capabilities. Human vision gives us built-in features such as motion detection and direction, stereoscopic depth, edge and shape detection, grouping by color, light, and shade. Because of these features, humans are good at quickly recognizing complex patterns in visual data, quickly detecting outliers in visual data, and visually manipulating a model to reflect the data. In contrast, machines are good at fast, accurate, and repetitive calculations necessary for machine learning. Not only is an appropriate division of labor between human and machine important, but a visualization of a learned model can serve as a visual explanation of why the learned model fits the data. Finally, visualization together with direct manipulation of the model can make it easier for the user to change the model to reflect the data, immediately see the results, and focus on interesting data regions. The impact of this research is that is may become easier to find good learning models and to visually understand why they are good.
在机器学习中,为数据选择合适的模型或更改现有模型都是必不可少的,但也是困难的步骤。令人惊讶的是,机器学习研究的趋势是忽略了人类这个奇妙的视觉信息处理器,而构建了独立的、完全自动化的学习系统。这项研究试图表明,由于人类和机器的独特能力,机器学习是一项最好由人类和机器共同完成的任务。人类视觉为我们提供了诸如运动检测和方向、立体深度、边缘和形状检测、颜色、光线和阴影分组等内置功能。由于这些特征,人类擅长快速识别视觉数据中的复杂模式,快速检测视觉数据中的异常值,并通过视觉操作模型来反映数据。相比之下,机器擅长快速、准确和重复的计算,这是机器学习所必需的。不仅人与机器之间的适当分工很重要,而且学习模型的可视化可以作为学习模型适合数据的可视化解释。最后,可视化和对模型的直接操作可以使用户更容易地更改模型以反映数据,立即看到结果,并关注感兴趣的数据区域。这项研究的影响是,我们可能更容易找到好的学习模式,并直观地理解为什么它们是好的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Armand Prieditis其他文献

Lazy Overfitting Control
惰性过拟合控制
Discovering Admissible Heuristics by Abstracting and Optimizing: A Transformational Approach
通过抽象和优化发现可接受的启发式:一种变革性方法
  • DOI:
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack Mostow;Armand Prieditis
  • 通讯作者:
    Armand Prieditis
The Expected Length of a Shortest Path
最短路径的预期长度
  • DOI:
    10.1016/0020-0190(93)90059-i
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Davis;Armand Prieditis
  • 通讯作者:
    Armand Prieditis

Armand Prieditis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Armand Prieditis', 18)}}的其他基金

SBIR Phase I: Predicting Healthcare Fraud, Waste and Abuse by Automatically Discovering Social Networks in Health Insurance Claims Data through Machine Learning
SBIR 第一阶段:通过机器学习自动发现健康保险索赔数据中的社交网络来预测医疗保健欺诈、浪费和滥用
  • 批准号:
    1648542
  • 财政年份:
    2016
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Standard Grant
SBIR Phase I: An Intelligent World-Wide Web Agent that Learns User Profiles to Find Relevant Information
SBIR 第一阶段:智能万维网代理,可学习用户配置文件以查找相关信息
  • 批准号:
    9960113
  • 财政年份:
    2000
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Standard Grant
Visualizing Learned Models and Data for Exploratory Machine Learning
可视化学习模型和数据以进行探索性机器学习
  • 批准号:
    9996046
  • 财政年份:
    1998
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Continuing Grant
Discovering Effective Admissible Heuristics by Abstraction: Developing a Quantitative Theory Relating Abstractness to Effectiveness
通过抽象发现有效的可接受启发式:发展一种将抽象性与有效性联系起来的定量理论
  • 批准号:
    9109796
  • 财政年份:
    1991
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Continuing Grant

相似海外基金

Model-predictive Control Methods with Learned Models for Traffic Signal Control
具有学习模型的交通信号控制模型预测控制方法
  • 批准号:
    572594-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Algorithms and Applications of Learned Student Models for Adaptive Learning Systems
自适应学习系统的学习学生模型的算法和应用
  • 批准号:
    RGPIN-2017-06776
  • 财政年份:
    2022
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Applications of Learned Student Models for Adaptive Learning Systems
自适应学习系统的学习学生模型的算法和应用
  • 批准号:
    RGPIN-2017-06776
  • 财政年份:
    2021
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Discovery Grants Program - Individual
Overcoming Epistemic Uncertainty to Plan with Learned Dynamics Models for Robotic Manipulation
克服认知不确定性,利用学习动态模型进行机器人操作规划
  • 批准号:
    2113401
  • 财政年份:
    2021
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Standard Grant
Algorithms and Applications of Learned Student Models for Adaptive Learning Systems
自适应学习系统的学习学生模型的算法和应用
  • 批准号:
    RGPIN-2017-06776
  • 财政年份:
    2020
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Applications of Learned Student Models for Adaptive Learning Systems
自适应学习系统的学习学生模型的算法和应用
  • 批准号:
    RGPIN-2017-06776
  • 财政年份:
    2019
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Discovery Grants Program - Individual
RI: SMALL: Inducing Answer Set Programs to Provide Accurate and Concise Explanation of Machine-learned Models
RI:SMALL:归纳答案集程序,为机器学习模型提供准确、简洁的解释
  • 批准号:
    1910131
  • 财政年份:
    2019
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Creating Inference from Machine Learned and Science Based Generative Models
TRIPODS X:RES:协作研究:从机器学习和基于科学的生成模型中创建推理
  • 批准号:
    1839217
  • 财政年份:
    2018
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Creating Inference from Machine Learned and Science Based Generative Models
TRIPODS X:RES:协作研究:从机器学习和基于科学的生成模型中创建推理
  • 批准号:
    1839234
  • 财政年份:
    2018
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Standard Grant
Algorithms and Applications of Learned Student Models for Adaptive Learning Systems
自适应学习系统的学习学生模型的算法和应用
  • 批准号:
    RGPIN-2017-06776
  • 财政年份:
    2018
  • 资助金额:
    $ 15.9万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了