RI: SMALL: Inducing Answer Set Programs to Provide Accurate and Concise Explanation of Machine-learned Models
RI:SMALL:归纳答案集程序,为机器学习模型提供准确、简洁的解释
基本信息
- 批准号:1910131
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence (AI)/Machine Learning is gaining prominence as an important technology that will have significant impact on our economy, industry, society, and academia. A major problem with modern machine learning methods is their inability to explain their decisions to human users. Statistical machine learning methods produce models that are complex algebraic solutions to optimization problems such as risk minimization or data likelihood maximization. Lack of intuitive descriptions makes it hard for users to understand, verify or trust the underlying rules that govern the model. Also, these methods cannot produce a justification for a prediction they compute for a new data sample. As a result, there is significant research interest in what is termed as Explainable AI. This project will develop methods to capture the logic behind machine learning models, making the models explainable to users. This will allow users to improve the models and will enhance users' trust in these models. Inductive Logic Programming (ILP) is an established technique to find the rules underlying a machine-learned model that are comprehensible to humans. The rules learned are represented as logic programs or Horn clauses. However, due to lack of negation-as-failure, Horn clauses offer limited expressiveness for representation and reasoning when the background knowledge about the domain being studied is incomplete. Additionally, ILP learns rules under the assumption that there are no exceptions to them. This results in exceptions and noise in the data being indistinguishable from each other. Often, the exceptions to the rules themselves follow a pattern, and these exceptions can be (recursively) learned as a default theory. It is hypothesized that a learned program that includes such a default theory describes the underlying model more accurately. This project extends heuristics-based, scalable ILP algorithms that learn default theories as answer set programs given background knowledge as well as positive and negative examples. These answer-set programs aim to capture the logic underlying a learned model to provide justifications for its decisions and to improve users' trust in it, discover any biases in the model, and comply with outside requirements such as governmental regulations. The aim of this project is to advance the state-of-the-art in ILP research and to contribute to the general area of machine learning and explainable AI. Results of the project will be open-sourced, with the aim to enabling industries that make use of machine learning to develop better understanding of and trust in the learned models they use.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)/机器学习作为一种重要的技术越来越突出,将对我们的经济,工业,社会和学术界产生重大影响。现代机器学习方法的一个主要问题是它们无法向人类用户解释它们的决定。统计机器学习方法产生的模型是优化问题(如风险最小化或数据似然最大化)的复杂代数解决方案。缺乏直观的描述使得用户很难理解、验证或信任管理模型的基本规则。此外,这些方法不能为它们为新数据样本计算的预测提供理由。因此,人们对所谓的可解释人工智能有着浓厚的研究兴趣。该项目将开发方法来捕获机器学习模型背后的逻辑,使模型可向用户解释。这将允许用户改进模型,并将增强用户对这些模型的信任。 归纳逻辑编程(ILP)是一种已建立的技术,用于找到人类可理解的机器学习模型的规则。学习的规则表示为逻辑程序或Horn子句。然而,由于缺乏否定作为失败,霍恩子句提供有限的表示和推理时,正在研究的领域的背景知识是不完整的表达。此外,ILP在假设规则没有例外的情况下学习规则。这导致数据中的异常和噪声彼此无法区分。通常,规则本身的例外遵循一种模式,这些例外可以(递归地)学习为默认理论。据推测,一个学习的程序,包括这样一个默认的理论描述的基础模型更准确。这个项目扩展了基于知识的,可扩展的ILP算法,学习默认理论作为给定背景知识以及正面和负面例子的答案集程序。这些答案集程序旨在捕捉学习模型的逻辑,为其决策提供理由,提高用户对模型的信任,发现模型中的任何偏见,并遵守外部要求,如政府法规。 该项目的目的是推进ILP研究的最新发展,并为机器学习和可解释AI的一般领域做出贡献。该项目的结果将是开源的,旨在使使用机器学习的行业能够更好地理解和信任他们使用的学习模型。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FOLD-RM: A Scalable, Efficient, and Explainable Inductive Learning Algorithm for Multi-Category Classification of Mixed Data
- DOI:10.1017/s1471068422000205
- 发表时间:2022-02
- 期刊:
- 影响因子:1.4
- 作者:Huaduo Wang;Farhad Shakerin;Gopal Gupta
- 通讯作者:Huaduo Wang;Farhad Shakerin;Gopal Gupta
FOLD-R++: A Scalable Toolset for Automated Inductive Learning of Default Theories from Mixed Data
FOLD-R:用于从混合数据中自动归纳学习默认理论的可扩展工具集
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang, Huaduo;Gupta, Gopal
- 通讯作者:Gupta, Gopal
White-box Induction From SVM Models: Explainable AI with Logic Programming
SVM 模型的白盒归纳:通过逻辑编程进行可解释的 AI
- DOI:10.1017/s1471068420000356
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Shakerin, Farhad;Gupta, Gopal
- 通讯作者:Gupta, Gopal
Knowledge-driven Natural Language Understanding of English Text and its Applications
知识驱动的英语文本自然语言理解及其应用
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Basu, Kinjal;Varanasi, Sarat;Farhad, Shakerin;Arias, Joaquin;Gupta, Gopal
- 通讯作者:Gupta, Gopal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gopal Gupta其他文献
2053 MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING AND ULTRASOUND FUSION BIOPSY DETECTS PROSTATE CANCER IN PATIENTS WITH PRIOR NEGATIVE TRUS BIOPSIES
- DOI:
10.1016/j.juro.2012.02.2218 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Nitin Yerram;Dmitry Volkin;Jeffery Nix;Srinivas Vourganti;An Hoang;Faisal Ahmed;Gopal Gupta;Art Rastinehad;Jochen Kruecker;Sameul Kadoury;Julie Locklin;Stacey Gates;Sheng Xu;Maria Merino;W. Marston Linehan;Ismail Baris Turkbey;Peter L. Choyke;Bradford J. Wood;Peter A. Pinto - 通讯作者:
Peter A. Pinto
MP67-16 UTILITY OF PREOPERATIVE MRI IN CHARACTERIZING THE PARENCHYMAL-TUMOR INTERFACE OF RENAL MASSES PRIOR TO SURGICAL INTERVENTION
- DOI:
10.1016/j.juro.2017.02.2052 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Shalin Desai;Connor Snarskis;Gopal Gupta - 通讯作者:
Gopal Gupta
52 TOTAL AND PARTIAL ADRENALECTOMY HAVE SIMILAR PERI-OPERATIVE OUTCOMES
- DOI:
10.1016/j.juro.2013.02.1428 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Chandy Ellimoottil;Quoc-Dien Trinh;Maxine Sun;Adam Kadlec;Kristin Greco;Marcus Quek;Gopal Gupta - 通讯作者:
Gopal Gupta
599 EMETINE DIHYDROCHLORIDE: A NOVEL THERAPY FOR BLADDER UROTHELIAL CARCINOMA
- DOI:
10.1016/j.juro.2013.02.1995 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:
- 作者:
Kimberly Foreman;John Jesse;Gopal Gupta - 通讯作者:
Gopal Gupta
Activities and androgenic regulation of lysosomal enzymes in the epididymis of rhesus monkey.
恒河猴附睾溶酶体酶的活性和雄激素调节。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:2.1
- 作者:
Gopal Gupta;B. Setty - 通讯作者:
B. Setty
Gopal Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gopal Gupta', 18)}}的其他基金
I-Corps: An AI-based Physician Advisory System for Disease Management
I-Corps:基于人工智能的疾病管理医生咨询系统
- 批准号:
1916206 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: SMALL: Efficient Implementations of Goal-Directed Solvers for Answer Set Programming
RI:SMALL:答案集编程的目标导向求解器的高效实现
- 批准号:
1718945 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
RI: Small: Design and Implementation of Goal-directed Solvers for Answer Set Programming
RI:小型:答案集编程的目标导向求解器的设计和实现
- 批准号:
1423419 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CISE Research Resources: Resources for Research in Scalable Parallel Computing and Networking Simulation
CISE 研究资源:可扩展并行计算和网络仿真研究资源
- 批准号:
0130847 - 财政年份:2001
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-CNPq Collaborative Research: Implementation and Compilation of High-Performance, Scalable Parallel Constraint Programming Systems
NSF-CNPq 合作研究:高性能、可扩展并行约束编程系统的实现和编译
- 批准号:
9900320 - 财政年份:1999
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
U.S.-Denmark Cooperative Research: Horn Logic Denotations - Theory, Practice and Applications
美国-丹麦合作研究:号角逻辑指称——理论、实践与应用
- 批准号:
9904063 - 财政年份:1999
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CISE Research Instrumentation: Parallel and Distributed Constraint Programming Systems on Multiprocessor PCs: Implementations and Applications
CISE 研究仪器:多处理器 PC 上的并行和分布式约束编程系统:实现和应用
- 批准号:
9729848 - 财政年份:1998
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Implementation Techniques for Parallel Logic Programming: Systematic Development of Parallel Prolog Engines
并行逻辑编程的实现技术:并行Prolog引擎的系统化开发
- 批准号:
9625358 - 财政年份:1996
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
U.S.-E.C. Cooperative Research: Implementation and Analysisof Parallel Logic Programming and Concurrent Constraint Systems
美国-欧洲委员会
- 批准号:
9415256 - 财政年份:1995
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AND-OR Parallel Execution of Logic Programs: A Stack Copying Approach
逻辑程序的 AND-OR 并行执行:堆栈复制方法
- 批准号:
9211732 - 财政年份:1992
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Inducing susceptibility with a small multidrug resistance transporter from P. aeruginosa
用来自铜绿假单胞菌的小型多药耐药转运蛋白诱导敏感性
- 批准号:
10619555 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Inducing susceptibility with a small multidrug resistance transporter from P. aeruginosa
用来自铜绿假单胞菌的小型多药耐药转运蛋白诱导敏感性
- 批准号:
10461633 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Development of phosphorylation-inducing chimeric small molecules
磷酸化诱导嵌合小分子的开发
- 批准号:
10043054 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Development of phosphorylation-inducing chimeric small molecules
磷酸化诱导嵌合小分子的开发
- 批准号:
10242051 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Analysis of cellular machinery using PPI-inducing small molecules
使用 PPI 诱导小分子分析细胞机制
- 批准号:
19H02839 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A RIPK2-Targeting Apoptosis-Inducing Small Molecule for the Treatment of Glioblastoma
用于治疗胶质母细胞瘤的 RIPK2 靶向凋亡诱导小分子
- 批准号:
9803569 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
A RIPK2-Targeting Apoptosis-Inducing Small Molecule for the Treatment of Glioblastoma
用于治疗胶质母细胞瘤的 RIPK2 靶向凋亡诱导小分子
- 批准号:
10133170 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
A RIPK2-Targeting Apoptosis-Inducing Small Molecule for the Treatment of Glioblastoma
用于治疗胶质母细胞瘤的 RIPK2 靶向凋亡诱导小分子
- 批准号:
10377492 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
A RIPK2-Targeting Apoptosis-Inducing Small Molecule for the Treatment of Glioblastoma
用于治疗胶质母细胞瘤的 RIPK2 靶向凋亡诱导小分子
- 批准号:
10646145 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
III: Small: A New Approach to Latent Space Learning with Diversity-Inducing Regularization and Applications to Healthcare Data Analytics
III:小型:具有多样性诱导正则化的潜在空间学习新方法及其在医疗保健数据分析中的应用
- 批准号:
1617583 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant