SBIR Phase I: Predicting Healthcare Fraud, Waste and Abuse by Automatically Discovering Social Networks in Health Insurance Claims Data through Machine Learning
SBIR 第一阶段:通过机器学习自动发现健康保险索赔数据中的社交网络来预测医疗保健欺诈、浪费和滥用
基本信息
- 批准号:1648542
- 负责人:
- 金额:$ 22.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project will pave the way for new types of social network analysis to detect anomalies, which could lead to more accurate and faster identification of Fraud, Waste, and Abuse (FWA), key opinion leaders (i.e., influentials), and market segments. Medicare and other healthcare providers lose hundreds of millions of dollars to FWA. This research proposes using a novel way to discover and combine relationships between entities (e.g., doctors) with information about the entities (e.g., prescription history) using machine learning. The goal is to reduce a claims investigator's workload while maintaining high accuracy in detecting FWA. In short, the results of this research will not only improve FWA detection efficiency, but enable detecting new types of FWA. Societal impact includes reduced costs to the taxpayer for government supported programs such as Medicare through better FWA detection. More broadly, the system could be used to find terrorist and crime networks, detect possible opioid or substance abuse epidemic cohorts, under-medication, over-medication, and even incorrect medications.The proposed project will apply a novel machine learning method to solve the Fraud, Waste, and Abuse (FWA) problem in health insurance. The technical problem is how to combine relations between entities such as doctors with information about doctors (e.g., a doctor's prescription history). This project advances the state of the art by developing a new way to automatically discover those relations and then combining those relations with the information about doctors through machine learning, thus vastly improving prediction accuracy. The method uses relation information to fill in the gaps of entity information alone and vice versa. It is believed that this method will hugely improve the ability to detect FWA. The goal is to achieve a 50% true positive rate in a database of fraud-convicted doctors published monthly by the government. The scope of the project involves analyzing several different types of health insurance claims formats (e.g., Medicare) and producing a fraud score, which then others can use. The anticipated results include a fraud score for most doctors in the U.S. (at least those who deal with Medicare), APIs to these scores, and an interactive visual system that claims investigators can use to reduce their workload while accurately identifying FWA.
这个小企业创新研究(SBIR)第一阶段项目的更广泛的影响/商业潜力将为新型社交网络分析铺平道路,以检测异常,这可能导致更准确和更快地识别欺诈,浪费和滥用(FWA),关键意见领袖(即,影响力)和细分市场。 医疗保险和其他医疗保健提供者损失了数亿美元给FWA。 本研究提出使用一种新的方式来发现和联合收割机之间的实体关系(例如,医生)具有关于实体的信息(例如,处方历史)。 目标是减少索赔调查员的工作量,同时保持检测FWA的高准确性。 总之,本研究的成果不仅可以提高FWA检测效率,而且可以检测到新类型的FWA。 社会影响包括通过更好的FWA检测降低纳税人在政府支持的计划(如医疗保险)中的成本。更广泛地说,该系统可用于发现恐怖分子和犯罪网络,检测可能的阿片类药物或药物滥用流行队列,用药不足,过度用药,甚至不正确的药物。拟议的项目将应用一种新的机器学习方法来解决医疗保险中的欺诈,浪费和滥用(FWA)问题。技术问题是如何将诸如医生的实体之间的联合收割机关系与关于医生的信息(例如,医生的处方历史)。该项目通过开发一种新的方法来自动发现这些关系,然后通过机器学习将这些关系与医生的信息相结合,从而大大提高预测准确性,从而推进了最新技术水平。该方法使用关系信息单独填充实体信息的空白,反之亦然。据信,该方法将极大地提高检测FWA的能力。目标是在政府每月公布的欺诈定罪医生数据库中实现50%的真阳性率。 该项目的范围包括分析几种不同类型的健康保险索赔格式(例如,医疗保险)和产生一个欺诈评分,然后其他人可以使用。预期的结果包括美国大多数医生(至少是那些处理医疗保险的医生)的欺诈评分,这些评分的API,以及一个交互式视觉系统,声称调查人员可以用来减少他们的工作量,同时准确地识别FWA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armand Prieditis其他文献
Discovering Admissible Heuristics by Abstracting and Optimizing: A Transformational Approach
通过抽象和优化发现可接受的启发式:一种变革性方法
- DOI:
- 发表时间:
1989 - 期刊:
- 影响因子:0
- 作者:
Jack Mostow;Armand Prieditis - 通讯作者:
Armand Prieditis
The Expected Length of a Shortest Path
最短路径的预期长度
- DOI:
10.1016/0020-0190(93)90059-i - 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
R. Davis;Armand Prieditis - 通讯作者:
Armand Prieditis
Armand Prieditis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armand Prieditis', 18)}}的其他基金
SBIR Phase I: An Intelligent World-Wide Web Agent that Learns User Profiles to Find Relevant Information
SBIR 第一阶段:智能万维网代理,可学习用户配置文件以查找相关信息
- 批准号:
9960113 - 财政年份:2000
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
Visualizing Learned Models and Data for Exploratory Machine Learning
可视化学习模型和数据以进行探索性机器学习
- 批准号:
9996046 - 财政年份:1998
- 资助金额:
$ 22.45万 - 项目类别:
Continuing Grant
Visualizing Learned Models and Data for Exploratory Machine Learning
可视化学习模型和数据以进行探索性机器学习
- 批准号:
9625726 - 财政年份:1996
- 资助金额:
$ 22.45万 - 项目类别:
Continuing Grant
Discovering Effective Admissible Heuristics by Abstraction: Developing a Quantitative Theory Relating Abstractness to Effectiveness
通过抽象发现有效的可接受启发式:发展一种将抽象性与有效性联系起来的定量理论
- 批准号:
9109796 - 财政年份:1991
- 资助金额:
$ 22.45万 - 项目类别:
Continuing Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
TOOLKIT FOR LEARNING AND PREDICTING ALCOHOL USE PATTERNS (SBIR PHASE II, TOPIC 019)
学习和预测酒精使用模式的工具包(SBIR 第二阶段,主题 019)
- 批准号:
10953998 - 财政年份:2023
- 资助金额:
$ 22.45万 - 项目类别:
Accounting for Temperature Effects When Predicting Molecular Weight and Composition Distribution for Gas-Phase Polyethylene Produced Using a Multi-Site Catalyst
预测使用多位点催化剂生产的气相聚乙烯的分子量和组成分布时考虑温度影响
- 批准号:
575986-2022 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
PIPP Phase I: Predicting Emergence in Multidisciplinary Pandemic Tipping-points (PREEMPT)
PIPP 第一阶段:预测多学科流行病临界点的出现 (PREEMPT)
- 批准号:
2200140 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
Collaborative Research:CDS&E:D3SC:Topology, Rare-event Simulation, and Machine Learning as Routes to Predicting Molecular Crystal Structures and Understanding Their Phase Behav
合作研究:CDS
- 批准号:
2240526 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
A shock-fitting approach for predicting the two-phase transient flows in stormwater systems (SWS) with best management practices (BMP)
利用最佳管理实践 (BMP) 预测雨水系统 (SWS) 中两相瞬变流的冲击拟合方法
- 批准号:
RGPIN-2020-06979 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Discovery Grants Program - Individual
PIPP Phase I: Predicting and Preventing Epidemic to Pandemic Transitions
PIPP 第一阶段:预测和预防流行病向大流行病的转变
- 批准号:
2200052 - 财政年份:2022
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
A shock-fitting approach for predicting the two-phase transient flows in stormwater systems (SWS) with best management practices (BMP)
利用最佳管理实践 (BMP) 预测雨水系统 (SWS) 中两相瞬变流的冲击拟合方法
- 批准号:
RGPIN-2020-06979 - 财政年份:2021
- 资助金额:
$ 22.45万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Finite Temperature Electronic Structure Methods for Predicting Material Phase Diagrams
职业:预测材料相图的有限温度电子结构方法
- 批准号:
2046744 - 财政年份:2021
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
A shock-fitting approach for predicting the two-phase transient flows in stormwater systems (SWS) with best management practices (BMP)
利用最佳管理实践 (BMP) 预测雨水系统 (SWS) 中两相瞬变流的冲击拟合方法
- 批准号:
RGPIN-2020-06979 - 财政年份:2020
- 资助金额:
$ 22.45万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research:CDS&E:D3SC:Topology, Rare-event Simulation, and Machine Learning as Routes to Predicting Molecular Crystal Structures and Understanding Their Phase Behav
合作研究:CDS
- 批准号:
1955403 - 财政年份:2020
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant