Model Uncertainty in Prediction, Variable Selection and Related Decision Problems

预测、变量选择和相关决策问题中的模型不确定性

基本信息

  • 批准号:
    9626135
  • 负责人:
  • 金额:
    $ 7.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-07-01 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

DMS 9626135 Clyde Statistical predictions based on complex models may be very sensitive to modeling assumptions, such as choice of covariates. As a result, choosing a single model may not lead to satisfactory predictions and may significantly underestimate prediction intervals due to not incorporating uncertainty about the model choice into the final answer. Model uncertainty often outweighs other sources of uncertainty in problems, but is often ignored. Bayesian methods offer a very effective and conceptually appealing alternative: predictions and inferences can be based on a set of models rather than a single model; each model contributes proportionally to the support it receives from the observed data. This research involves Bayesian methods for stochastically searching high dimensional model spaces. As the number of models is very large, the challenge is therefore that of finding efficient ways of exploring the space of models, selecting plausible ones, and attributing to each of them a weight (approximating the posterior probability) for the mixing-based prediction or other utility calculations. Examples for the methodology include applications in wavelets and generalized additive models: calibration and prediction in spectroscopy using wavelet packets; determining the influence of particulate matter on mortality adjusting for other covariates in the presence of model uncertainty; and variable selection and prediction in binary regression models for seedling survival. Model averaging using importance sampling to sample from high dimensional model spaces is an effective solution. This approach is extended to selecting transformations of variables, subspace selection and thresholding in wavelets, and generalized additive models in the applications described above. Methods for sampling models with a probability proportional to their expected utility are also developed. %%% Finding and using models to describe data is a fundamental problem in both statis tics and the sciences. Statistical predictions may be very sensitive to the set of explanatory variables included in a model. Selecting a particular model based on selecting a subset of the explanatory variables and using this model for prediction, may lead to riskier decisions due to not incorporating uncertainty about model choice into the final answer. Model uncertainty often outweighs other sources of uncertainty in problems, but is usually ignored. In this research, predictions and inferences can be based on a set of models rather than a single model; each model contributes to the decision proportionally to the support it receives from the observed data. As the number of possible models is very large, the challenge is therefore that of finding efficient ways of exploring the space of models, selecting plausible ones, and attributing to each of them a weight for the weighted prediction or other decisions. The methodological developments are driven by the following applications: calibration and prediction in spectroscopy; and determining the influence of particulate matter on mortality adjusting for other meteorological variables when there is uncertainty about which variables should be included in the prediction model. ***
DMS 9626135克莱德 基于复杂模型的统计预测可能对建模假设非常敏感,例如协变量的选择。 因此,选择单一模型可能不会导致令人满意的预测,并且可能会由于未将模型选择的不确定性纳入最终答案而显著低估预测区间。 模型的不确定性往往超过其他来源的不确定性的问题,但往往被忽视。贝叶斯方法提供了一个非常有效和概念上有吸引力的替代方案:预测和推断可以基于一组模型,而不是单个模型;每个模型的贡献与它从观察数据中获得的支持成比例。本研究涉及随机搜索高维模型空间的贝叶斯方法。 由于模型的数量非常大,因此挑战在于找到探索模型空间的有效方法,选择合理的模型,并为每个模型分配权重(近似后验概率),用于基于混合的预测或其他效用计算。 该方法的例子包括应用小波和广义加法模型:校准和预测光谱使用小波包;确定颗粒物对死亡率的影响调整其他协变量的存在模型的不确定性;和变量的选择和预测的二元回归模型幼苗存活。 利用重要性抽样对高维模型空间进行模型平均是一种有效的解决方案。 这种方法被扩展到选择变量的变换,子空间选择和小波阈值,以及上述应用中的广义加性模型。 方法抽样模型的概率成比例的预期效用也被开发出来。 寻找和使用模型来描述数据是统计学和科学中的一个基本问题。 统计预测可能对模型中包含的解释变量集非常敏感。 基于选择解释变量的子集来选择特定模型并使用该模型进行预测,可能会导致风险更高的决策,因为没有将模型选择的不确定性纳入最终答案。 模型的不确定性往往超过其他来源的不确定性的问题,但通常被忽略。 在这项研究中,预测和推断可以基于一组模型,而不是单个模型;每个模型对决策的贡献与其从观察数据中获得的支持成比例。由于可能的模型数量非常大,因此,挑战在于找到有效的方法来探索模型空间,选择合理的模型,并为每个模型分配权重,以进行加权预测或其他决策。方法学的发展是由以下应用驱动的:光谱学中的校准和预测;以及当预测模型中应包括哪些变量存在不确定性时,确定颗粒物对死亡率的影响,并对其他气象变量进行调整。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Merlise Clyde其他文献

Merlise Clyde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Merlise Clyde', 18)}}的其他基金

Advances in Bayesian Model Choice
贝叶斯模型选择的进展
  • 批准号:
    1106891
  • 财政年份:
    2011
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adaptive Experimental Design for Astronomical Exploration
协作研究:天文探索的自适应实验设计
  • 批准号:
    0507481
  • 财政年份:
    2005
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
SCREMS: Distributed Environments for Stochastic Computation
SCEMS:随机计算的分布式环境
  • 批准号:
    0422400
  • 财政年份:
    2004
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
High Dimensional Model Averaging and Model Selection
高维模型平均和模型选择
  • 批准号:
    0406115
  • 财政年份:
    2004
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Model Uncertainty, Model Selection, and Robustness with Applications in Environmental Sciences
模型不确定性、模型选择和鲁棒性及其在环境科学中的应用
  • 批准号:
    9733013
  • 财政年份:
    1998
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant

相似海外基金

Prediction and uncertainty quantification for multi-model ensembles
多模型集成的预测和不确定性量化
  • 批准号:
    519295-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Prediction and uncertainty quantification for multi-model ensembles
多模型集成的预测和不确定性量化
  • 批准号:
    519295-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Representing uncertainty in ocean observations and the ocean model, for coupled ensemble data assimilation and ensemble extended-range prediction
表示海洋观测和海洋模型中的不确定性,用于耦合集合数据同化和集合扩展范围预测
  • 批准号:
    NE/J00586X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Research Grant
Development of a new paradigm for on-line prediction in the presence of model uncertainty
开发存在模型不确定性的在线预测新范式
  • 批准号:
    261834-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a new paradigm for on-line prediction in the presence of model uncertainty
开发存在模型不确定性的在线预测新范式
  • 批准号:
    261834-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a new paradigm for on-line prediction in the presence of model uncertainty
开发存在模型不确定性的在线预测新范式
  • 批准号:
    261834-2003
  • 财政年份:
    2004
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: WCR: Incorporation of Model Bias and Uncertainty in Land Surface Hydrologic Flux Prediction Using a Data Assimilation Network
合作研究:WCR:使用数据同化网络将模型偏差和不确定性纳入陆地表面水文通量预测
  • 批准号:
    0333154
  • 财政年份:
    2003
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Development of a new paradigm for on-line prediction in the presence of model uncertainty
开发存在模型不确定性的在线预测新范式
  • 批准号:
    261834-2003
  • 财政年份:
    2003
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: WCR: Incorporation of Model Bias and Uncertainty in Land Surface Hydrologic Flux Prediction Using a Data Assimilation Framework
合作研究:WCR:使用数据同化框架将模型偏差和不确定性纳入陆地表面水文通量预测
  • 批准号:
    0333133
  • 财政年份:
    2003
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Sensitivity of Deterministic Prediction to Model Configuration and Initial Uncertainty
确定性预测对模型配置和初始不确定性的敏感性
  • 批准号:
    0109241
  • 财政年份:
    2001
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了