Model Uncertainty, Model Selection, and Robustness with Applications in Environmental Sciences
模型不确定性、模型选择和鲁棒性及其在环境科学中的应用
基本信息
- 批准号:9733013
- 负责人:
- 金额:$ 24.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
----------------------------------------------------------------------- Proposal Number: DMS PI: Merlise A. Clyde Institution: Duke University Project: Mode Uncertainty, Model Selection, and Robustness, with Applications in Environmental Sciences Abstract: Finding models to describe data and relationships among variables is a fundamental problem in statistics and science. Linear regression and its generalizations are some of the most commonly used statistical methods for data analysis. As scientists collect increasingly larger data sets, the fear of over-fitting the data by using all measured covariates leads to the standard approach of selecting a single ``best'' model based on a subset of the covariates, and then proceeding with scientific inferences and predictions as if that were the true model. This typical analysis ignores the uncertainty about which variables should be included in the model, potentially leading to overconfident inferences. Model uncertainty often significantly outweighs other sources of uncertainty in problems, but is generally ignored in standard statistical practice and teaching. This research focuses on Bayesian methods for incorporating model uncertainty into data analysis and decision making. In Bayesian model averaging, predictions and inferences are based on a set of models rather than a single model; each model contributes proportionally to the support it receives from the observed data. Novel methods of identifying promising models for use in Bayesian model averaging are studied. These can increase the applicability of Bayesian methods to realistic problems that involve a large number of variables. One of the major applications of the research is to estimate the effect of particulate matter on mortality in the elderly population and assess the potential impact of the EPA's new National Ambient Air Quality Standards for particulates. This and other case studies will be used to develop a new course in modern Baye sian statistical methods for environmental and biological science students at Duke University.
-- 主要研究者:Merlise A.克莱德机构:杜克大学项目:模式不确定性,模型选择和鲁棒性, 在环境科学中的应用 摘要: 寻找模型来描述数据和变量之间的关系是统计学和科学中的一个基本问题。线性 回归及其推广是一些最常用的 数据分析的统计方法。 当科学家们收集 越来越大的数据集,过度拟合数据的恐惧, 使用所有测量的协变量导致标准方法,即根据协变量的子集选择单个“最佳”模型,然后继续进行科学推断和预测,就好像这是真正的模型一样。 这种典型的分析忽略了模型中应包含哪些变量的不确定性,可能导致过度自信的推断。 模型的不确定性往往大大超过其他来源的不确定性的问题,但通常被忽视的标准统计实践和教学。 本研究的重点是将模型的不确定性纳入数据分析和决策的贝叶斯方法。 在贝叶斯模型平均中,预测和推断是基于一组模型而不是单个模型;每个模型都按比例从观察数据中获得支持。 研究了贝叶斯模型平均中有前途模型的识别方法。 这些可以增加贝叶斯方法对涉及大量变量的现实问题的适用性。 该研究的主要应用之一是估计颗粒物对老年人死亡率的影响,并评估EPA新的国家环境空气质量标准对颗粒物的潜在影响。 这个和其他案例研究将用于开发一个新的课程,在现代贝叶斯统计方法的环境和生物科学的学生在杜克大学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Merlise Clyde其他文献
Merlise Clyde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Merlise Clyde', 18)}}的其他基金
Collaborative Research: Adaptive Experimental Design for Astronomical Exploration
协作研究:天文探索的自适应实验设计
- 批准号:
0507481 - 财政年份:2005
- 资助金额:
$ 24.19万 - 项目类别:
Standard Grant
SCREMS: Distributed Environments for Stochastic Computation
SCEMS:随机计算的分布式环境
- 批准号:
0422400 - 财政年份:2004
- 资助金额:
$ 24.19万 - 项目类别:
Standard Grant
High Dimensional Model Averaging and Model Selection
高维模型平均和模型选择
- 批准号:
0406115 - 财政年份:2004
- 资助金额:
$ 24.19万 - 项目类别:
Standard Grant
Model Uncertainty in Prediction, Variable Selection and Related Decision Problems
预测、变量选择和相关决策问题中的模型不确定性
- 批准号:
9626135 - 财政年份:1996
- 资助金额:
$ 24.19万 - 项目类别:
Standard Grant
相似海外基金
Selection of optimal design alternatives under conditions of uncertainty in underground hard rock mine valuation studies through assessment of strategic robustness tooperating risk
通过评估运营风险的战略鲁棒性,在地下硬岩矿估值研究的不确定性条件下选择最佳设计方案
- 批准号:
249942-2013 - 财政年份:2019
- 资助金额:
$ 24.19万 - 项目类别:
Discovery Grants Program - Individual
Research on portfolio selection problems incorporating uncertainty of investment times
考虑投资时间不确定性的投资组合选择问题研究
- 批准号:
19K01757 - 财政年份:2019
- 资助金额:
$ 24.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Variable selection problem and evaluation of measuring uncertainty in small area estimation
小区域估计中的变量选择问题及测量不确定度评估
- 批准号:
19K13667 - 财政年份:2019
- 资助金额:
$ 24.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Selection of optimal open pit mining limits with multiple geostatistical models to quantify uncertainty in pit value
使用多个地质统计模型选择最佳露天开采限制,以量化矿坑价值的不确定性
- 批准号:
508333-2017 - 财政年份:2017
- 资助金额:
$ 24.19万 - 项目类别:
Engage Grants Program
Selection of optimal design alternatives under conditions of uncertainty in underground hard rock mine valuation studies through assessment of strategic robustness tooperating risk
通过评估运营风险的战略鲁棒性,在地下硬岩矿估值研究的不确定性条件下选择最佳设计方案
- 批准号:
249942-2013 - 财政年份:2017
- 资助金额:
$ 24.19万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty in action selection and sequencing.
行动选择和顺序的不确定性。
- 批准号:
1792919 - 财政年份:2016
- 资助金额:
$ 24.19万 - 项目类别:
Studentship
Selection of optimal design alternatives under conditions of uncertainty in underground hard rock mine valuation studies through assessment of strategic robustness tooperating risk
通过评估运营风险的战略鲁棒性,在地下硬岩矿估值研究的不确定性条件下选择最佳设计方案
- 批准号:
249942-2013 - 财政年份:2015
- 资助金额:
$ 24.19万 - 项目类别:
Discovery Grants Program - Individual
Selection of optimal design alternatives under conditions of uncertainty in underground hard rock mine valuation studies through assessment of strategic robustness tooperating risk
通过评估运营风险的战略鲁棒性,在地下硬岩矿估值研究的不确定性条件下选择最佳设计方案
- 批准号:
249942-2013 - 财政年份:2014
- 资助金额:
$ 24.19万 - 项目类别:
Discovery Grants Program - Individual
Selection of optimal design alternatives under conditions of uncertainty in underground hard rock mine valuation studies through assessment of strategic robustness tooperating risk
通过评估运营风险的战略鲁棒性,在地下硬岩矿估值研究的不确定性条件下选择最佳设计方案
- 批准号:
249942-2013 - 财政年份:2013
- 资助金额:
$ 24.19万 - 项目类别:
Discovery Grants Program - Individual
A new framework for nonlinear input variable selection coupled with ensemble-wavelet-machine learning methods with uncertainty assessments for urban water demand forecasting
非线性输入变量选择的新框架与集成小波机器学习方法相结合,用于城市需水量预测的不确定性评估
- 批准号:
450689-2013 - 财政年份:2013
- 资助金额:
$ 24.19万 - 项目类别:
Engage Grants Program