Biased Sampling and Confidence
有偏差的抽样和置信度
基本信息
- 批准号:9626347
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS 9626347 Woodroofe The research concerns biased sampling models and exponential time series. In biased sampling models, the probability of including a subject in the study may depend on variables of interest--for example, the size of the subject. Interest centers on cases in which the inclusion probabilities depend on the variables of interest in a monotone way, but without assuming that the inclusion probabilities are known or known up to a few parameters. The research involves developing tests for the presence of bias, developing estimation procedures when bias is present and studying the properties of both tests and estimators. Likelihood and penalized likelihood are used to develop the tests and estimators, and the properties are studied through a combination of asymptotic analysis and simulation. An exponential time series is a stochastic process whose finite dimensional distributions form exponential families. For such process, the sampling distributions of normalized maximum likelihood estimators are asymptotically normal, under quite general conditions. The research involves developing higher order approximations to the these sampling distributions and using the refined approximations to form corrected confidence sets. Mathematically, the results take the form of very weak expansions in which a Bayesian approach is used to obtain approximations to sampling distributions. Biased samples arise frequently in investigations that involve searching for hidden objects, since the probability of finding an object may depend on its properties. For example, astronomers are more likely to find a large bright galaxy than a small dim one, and geologists are more likely to find a large oil well than a small one. Previous work on such problems has concentrated on the case in which the inclusion probabilities depend on the variables of interest in a known way. The new research involves developing data analyses that are appr opriate when the latter relationship is not known and includes methods for estimating the relationship from observed data. The relationship is important, because the number of objects not found depends on it in crucial way. The research considers exponential time series which include classical time series, like stock prices and weather, but also many others like adaptively designed experiments (experiments that design themselves) and sequential clinical trials.
DMS 9626347 Woodroofe 该研究涉及有偏抽样模型, 指数时间序列 在有偏抽样模型中, 在研究中纳入受试者可能取决于以下变量 兴趣-例如,主题的大小。 兴趣集中在 包含概率取决于以下变量的情况 以单调的方式感兴趣,但不假设包含 概率是已知的或已知几个参数。 的 研究包括开发偏见存在的测试, 在存在偏差时制定估计程序, 研究检验和估计的性质。 可能性 和惩罚可能性被用来开发测试, 估计,并通过组合的性质进行了研究 渐近分析和模拟。 指数时间序列是一个 有限维分布形成的随机过程 指数家族 对于这样的过程, 在相当一般的条件下,归一化极大似然估计量是渐近正态的。 研究涉及 开发这些采样的高阶近似 分布,并使用精细近似来形成 修正的置信度。 从数学上讲,结果的形式是 使用贝叶斯方法的非常弱的扩展 以获得抽样分布的近似值。 在涉及以下问题的调查中,经常会出现偏倚样本: 寻找隐藏的物体,因为找到一个 对象可能取决于其属性。 例如,天文学家 更有可能找到一个大的明亮星系,而不是一个小的昏暗星系。 一个,地质学家更有可能找到一个大油井,而不是一个 小的。 以前关于这类问题的工作主要集中在 包含概率依赖于变量的情况 以已知的方式感兴趣。 这项新研究涉及开发 数据分析是适当的,当后者 关系是未知的,包括方法,估计 与观测数据的关系。 关系很重要, 因为没有找到的物体的数量取决于它在关键的 路上了 该研究考虑指数时间序列,其中包括经典的时间序列,如股票价格和天气,但也 许多其他人喜欢自适应设计的实验(实验 他们自己设计的)和连续的临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Woodroofe其他文献
Bootstrap confidence intervals for isotonic estimators in a stereological problem
体视学问题中等张估计量的自举置信区间
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
B. Sen;Michael Woodroofe - 通讯作者:
Michael Woodroofe
Estimating a mean from delayed observations
- DOI:
10.1007/bf00533314 - 发表时间:
1976-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Norman Starr;Robert Wardrop;Michael Woodroofe - 通讯作者:
Michael Woodroofe
On martingale approximations
关于鞅近似
- DOI:
10.1214/07-aap505 - 发表时间:
2007 - 期刊:
- 影响因子:1.8
- 作者:
Ou Zhao;Michael Woodroofe - 通讯作者:
Michael Woodroofe
Estimating a Polya Frequency Function
估计 Polya 频率函数
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. K. Pal;Michael Woodroofe;Mary Meyer - 通讯作者:
Mary Meyer
Estimating Dark Matter Distributions
估计暗物质分布
- DOI:
10.1086/429792 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Xiao Wang;Michael Woodroofe;Matthew G. Walker;Mario Mateo;E. Olszewski - 通讯作者:
E. Olszewski
Michael Woodroofe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Woodroofe', 18)}}的其他基金
Limit Theorems and Statistical Inference for Ergodic Processes
遍历过程的极限定理和统计推断
- 批准号:
0102268 - 财政年份:2001
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Biased Sampling, Bump Hunting and Confidence
数学科学:有偏差采样、凹凸搜索和置信度
- 批准号:
9504515 - 财政年份:1995
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Non Parametric Inference and Sequential Design
数学科学:非参数推理和顺序设计
- 批准号:
9203357 - 财政年份:1992
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stopping and Allocation
数学科学:停止和分配
- 批准号:
8902188 - 财政年份:1989
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Estimation in Large Samples
数学科学:大样本估计
- 批准号:
8413452 - 财政年份:1984
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Large Sample Approximations in the Sequential Design of Experiments
实验序贯设计中的大样本近似
- 批准号:
8101897 - 财政年份:1981
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 18.9万 - 项目类别:
Studentship
EMPOWHPVR: Exploring the factors that impact HPV self-sampling uptake amongst Black women and people with a cervix in Peel region, Ontario
EMPOWHPVR:探讨影响安大略省皮尔地区黑人女性和宫颈癌患者 HPV 自我采样率的因素
- 批准号:
502585 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Research Grant
ERI: From Data to Design: Enhancing Pedestrian Infrastructure for Well-Being through Mobile Sensing and Experience Sampling in the Wild
ERI:从数据到设计:通过移动传感和野外体验采样增强行人基础设施以促进福祉
- 批准号:
2347012 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Advancing the boundaries of grain sampling: A robot for the autonomous, safe and representative sampling of grain bulks
突破谷物采样的界限:用于对散装谷物进行自主、安全和代表性采样的机器人
- 批准号:
10089327 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Collaborative R&D
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Fellowship
Oregon State University Marine Rock and Sediment Sampling (MARSSAM) Facility Oceanographic Instrumentation 2024
俄勒冈州立大学海洋岩石和沉积物采样 (MARSSAM) 设施海洋学仪器 2024
- 批准号:
2415967 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Development of PU signal sampling technique of fluxgate magnetometer and progressive comprehension of three-dimensional magnetic field in space
磁通门磁力计PU信号采样技术的发展与空间三维磁场的渐进理解
- 批准号:
23H01230 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Surveillance and sampling to maintain absence of pests and diseases
监测和采样以确保没有病虫害
- 批准号:
LP220100003 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Linkage Projects
Fiber sampling technique and counting protocol development for carbon nanotubes
碳纳米管纤维采样技术和计数协议开发
- 批准号:
10593857 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别: