Inference for Restricted Parameters
受限参数的推断
基本信息
- 批准号:0405584
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPI: Michael Woodroofe proposal: 0405584 INFERENCE FOR RESTRICTED PARAMETERS Problems in which a density or regression function is known to be smooth and to satisfy shape restrictions, like monotonicity or convexity, are investigated. Shape restricted regression and smoothing splines offer one promising approach to the problem, and the combination of shape restrictions with local polynomial methods another. In large samples the emphasis is on asymptotic distributions. With a lot of smoothing the contribution of the shape restrictions to the asymptotic distribution is negligible; with only a little smoothing, the shape restrictions dominate, leading to non-normal asymptotic distributions. The nature of the transition between a little smoothing a lot is investigated. In many cases, especially with smoothing splines, an estimator is the solution to a differential equation. In such cases it is possible to use the Green's function to construct an asymptotically equivalent kernel estimator from which the asymptotic distribution may be found. In moderate samples, the shape restrictions do affect the distribution of estimators, even in the presence of substantial smoothing. The size of this effect is investigated both analytically, using techniques of shrinkage estimation, and by simulation. Problems with known inequalities for parameters also arise in models with only a few parameters, like variance components, and classical confidence intervals can be empty, or degenerate, in such problems. In current work interest centers on finding Bayesian credible intervals with good frequentist properties. The work on shape restricted density estimation and regression is motivated by a project to map the distribution of dark matter in nearby dwarf spheroidal galaxies, like Ursa Minor. Dark matter is matter that cannot be seen. Its existence is inferred from gravitational effects, but what it is comprised of is an open question. It is expected that knowing where the dark matter is may shed some light on what it is. The work on models with few parameters is motivated by the problem of disentangling signal and background events in both physics and astronomy. The confidence interval problem is an important part of the search for an elementary particle, the Higgs, in particular, and has been a featured topic at several recent meetings of high-energy physicists. The investigator is using these two examples and others in an interdisciplinary seminar on Statistics in the physical sciences.
摘要:研究已知密度函数或回归函数是光滑的,并且满足单调性或凸性等形状限制的问题。形状限制回归和光滑样条是一种很有前途的方法,形状限制与局部多项式方法的结合是另一种方法。在大样本中,重点是渐近分布。对于大量的平滑,形状限制对渐近分布的贡献可以忽略不计;只要稍微平滑,形状限制就占主导地位,导致非正态渐近分布。研究了少平滑多过渡的性质。在许多情况下,特别是对于光滑样条曲线,估计量是微分方程的解。在这种情况下,可以使用格林函数构造一个渐近等效核估计量,从中可以找到渐近分布。在中等样本中,即使存在大量平滑,形状限制也会影响估计量的分布。这种效应的大小是分析研究,使用收缩估计技术,并通过模拟。在只有少数参数(如方差成分)的模型中,也会出现已知参数不等式的问题,而在此类问题中,经典置信区间可能是空的或退化的。目前的研究兴趣集中在寻找具有良好频域性质的贝叶斯可信区间。形状限制密度估计和回归的工作是由一个项目激发的,该项目旨在绘制附近矮球状星系(如小熊座)中暗物质的分布。暗物质是看不见的物质。它的存在是从引力效应推断出来的,但它的组成是一个悬而未决的问题。人们预计,知道暗物质的位置可能会对它是什么有所启发。对少参数模型的研究是由物理学和天文学中信号和背景事件的解纠缠问题所驱动的。置信区间问题是寻找基本粒子(特别是希格斯粒子)的一个重要部分,在最近的几次高能物理学家会议上一直是一个特色话题。在一个关于物理科学统计的跨学科研讨会上,研究者正在使用这两个例子和其他例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Woodroofe其他文献
Bootstrap confidence intervals for isotonic estimators in a stereological problem
体视学问题中等张估计量的自举置信区间
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
B. Sen;Michael Woodroofe - 通讯作者:
Michael Woodroofe
Estimating a mean from delayed observations
- DOI:
10.1007/bf00533314 - 发表时间:
1976-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Norman Starr;Robert Wardrop;Michael Woodroofe - 通讯作者:
Michael Woodroofe
On martingale approximations
关于鞅近似
- DOI:
10.1214/07-aap505 - 发表时间:
2007 - 期刊:
- 影响因子:1.8
- 作者:
Ou Zhao;Michael Woodroofe - 通讯作者:
Michael Woodroofe
Estimating Dark Matter Distributions
估计暗物质分布
- DOI:
10.1086/429792 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Xiao Wang;Michael Woodroofe;Matthew G. Walker;Mario Mateo;E. Olszewski - 通讯作者:
E. Olszewski
Estimating a Polya Frequency Function
估计 Polya 频率函数
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. K. Pal;Michael Woodroofe;Mary Meyer - 通讯作者:
Mary Meyer
Michael Woodroofe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Woodroofe', 18)}}的其他基金
Limit Theorems and Statistical Inference for Ergodic Processes
遍历过程的极限定理和统计推断
- 批准号:
0102268 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Biased Sampling, Bump Hunting and Confidence
数学科学:有偏差采样、凹凸搜索和置信度
- 批准号:
9504515 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Non Parametric Inference and Sequential Design
数学科学:非参数推理和顺序设计
- 批准号:
9203357 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Stopping and Allocation
数学科学:停止和分配
- 批准号:
8902188 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Estimation in Large Samples
数学科学:大样本估计
- 批准号:
8413452 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
Large Sample Approximations in the Sequential Design of Experiments
实验序贯设计中的大样本近似
- 批准号:
8101897 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Time Restricted Eating to Mitigate Obesity in Veterans with Spinal Cord Injury
限制时间饮食以减轻脊髓损伤退伍军人的肥胖
- 批准号:
10752306 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Peripherally-restricted non-addictive cannabinoids for cancer pain treatment
用于癌症疼痛治疗的外周限制性非成瘾大麻素
- 批准号:
10726405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Time Restricted Feeding in Diet Induced Obesity Improves Aortic Damage and Endothelial Function Through Reducing Th17 Cells
饮食中的限时喂养通过减少 Th17 细胞改善主动脉损伤和内皮功能
- 批准号:
10606103 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Time-restricted eating: Is it an efficacious tool for weight loss maintenance
限时饮食:是减肥维持的有效工具吗
- 批准号:
10591316 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Defining MHC class I restricted antigen presentation to CD8 T cells in experimental AD and Tauopathy - Supplement
定义实验性 AD 和 Tau 病中 MHC I 类限制性抗原呈递至 CD8 T 细胞 - 补充
- 批准号:
10836880 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Harnessing Highly Networked HLA-E-Restricted CTL Epitopes to Achieve a Broadly Effective HIV Cure
利用高度网络化的 HLA-E 限制性 CTL 表位实现广泛有效的 HIV 治愈
- 批准号:
10684371 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A new mouse model to study the function of CD1b-restricted germline encoded, mycolyl lipid-reactive (GEM) T cells
一种新的小鼠模型,用于研究 CD1b 限制的种系编码的菌基脂质反应性 (GEM) T 细胞的功能
- 批准号:
10727275 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Pilot trial of time restricted eating to support an adaptive innovative clinical trial of combined chronotherapies for mania in bipolar disorder
限时饮食试点试验,以支持双相情感障碍躁狂症联合时间疗法的适应性创新临床试验
- 批准号:
487676 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Exploring the effects of time-restricted feeding on the immune function of obese individuals: a multi-omic approach
探索限时喂养对肥胖个体免疫功能的影响:多组学方法
- 批准号:
MR/X031381/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
-- - 项目类别: