Computational Methods in Mathematics and the Physical Sciences
数学和物理科学的计算方法
基本信息
- 批准号:9626804
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Norman 9626804 The investigator and his colleagues pursue interdisciplinary research and training in an environment supporting modern scientific computation and advanced computer graphics. The areas of investigation involve partial differential equations, integrable systems, and variational problems in geometry and topology. Particular topics include: spin structures on surfaces with applications to the geometry of immersions, particularly to rigidity and period problems; surfaces that minimize bending energy subject to natural constraints; the moduli spaces of constant mean curvature embeddings and immersions, using mechanics, symplectic geometry and integrable systems; construction of embedded minimal surfaces by desingularizing immersed minimal surfaces; elastic curves and their higher order soliton analogues; electrostatic energies associated with knots and links, and the behavior of their gradient flows; curve and surface interfaces between distinct thermodynamic phases in disequilibrium; and statistical equilibrium solutions to the Euler equations for incompressible fluid flow. The Center for Geometry, Analysis, Numerics & Graphics (GANG) pursues interdisciplinary research and training in an environment supporting modern scientific computation and advanced computer graphics. The mathematical work at GANG is motivated by - and can shed light upon - many interesting natural systems that arise in both "applied" and "basic" research. For example, the folding and entanglement of long molecules, like proteins, DNA or synthetic polymers, can be dynamically modeled using elastic and electrostatic curve energies that were originally developed at GANG to study the geometry and topology of knots and links; such models may be useful in predicting the strength of polymer materials or the biochemical effect of pharmaceuticals. And a quite unexpected and fundamental new phenomenon - the "conformal diffusion" of tiny phospholipid vesicles, reported by French physicists in the Augu st 1995 issue of Science - was stimulated by work at GANG on the bending energy of surfaces. The computation and visualization facilities at the GANG laboratory serve an important and interrelated triple duty by permitting the pioneering mathematical experiments to be carried out in the first place, providing a fertile environment for the education and training of students, and aiding communication with the general public (to paraphrase the late physicist, Eugene Wigner) on the remarkable effectiveness of mathematics in the natural world.
诺曼9626804 研究人员和他的同事在支持现代科学计算和先进计算机图形学的环境中进行跨学科研究和培训。 研究领域涉及偏微分方程,可积系统,几何和拓扑学中的变分问题。 具体专题包括:自旋结构表面上的应用几何浸入,特别是刚性和周期问题;表面,最小化弯曲能受到自然约束;模空间的恒定平均曲率嵌入和浸入,使用力学,辛几何和可积系统;建设嵌入极小曲面的desingularizing浸入极小曲面;弹性曲线及其高阶孤立子类似物;与结和链接相关的静电能,以及它们的梯度流行为;不平衡中不同热力学相之间的曲线和表面界面;以及不可压缩流体流动的欧拉方程的统计平衡解。 几何,分析,数值图形中心(GANG)在支持现代科学计算和先进计算机图形的环境中进行跨学科研究和培训。 GANG的数学工作是由许多有趣的自然系统所激发的,这些系统出现在“应用”和“基础”研究中。 例如,长分子(如蛋白质、DNA或合成聚合物)的折叠和缠结可以使用最初在GANG开发的弹性和静电曲线能量进行动态建模,以研究结和链接的几何形状和拓扑结构;这些模型可能有助于预测聚合物材料的强度或药物的生化效应。 法国物理学家在1995年8月出版的《科学》杂志上报道了一个相当出乎意料的基本新现象--微小磷脂囊泡的“共形扩散”--这是由GANG对表面弯曲能的研究所激发的。 GANG实验室的计算和可视化设施承担着重要且相互关联的三重职责,首先允许进行开创性的数学实验,为学生的教育和培训提供肥沃的环境,并帮助与公众沟通(解释已故物理学家尤金维格纳)数学在自然世界中的显着效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Norman其他文献
The binding of [3H]leukotriene C4 to guinea-pig lung membranes. The lack of correlation of LTC4 functional activity with binding affinity.
[3H]白三烯 C4 与豚鼠肺膜的结合。
- DOI:
10.1016/0014-2999(87)90456-0 - 发表时间:
1987 - 期刊:
- 影响因子:5
- 作者:
Peter Norman;T. Abram;Harold C. Kluender;P. Gardiner;N. Cuthbert - 通讯作者:
N. Cuthbert
Characterisation of receptors mediating the contractile effects of prostanoids in guinea-pig and human airways.
介导豚鼠和人类呼吸道中前列腺素类收缩效应的受体的表征。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:5
- 作者:
Marie McKenniff;Ian W. Rodger;Peter Norman;P. Gardiner - 通讯作者:
P. Gardiner
Explicitp-adic theta functions
- DOI:
10.1007/bf01388752 - 发表时间:
1986-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Peter Norman - 通讯作者:
Peter Norman
The inhibition of [3H]leukotriene D4 binding to guinea-pig lung membranes. The correlation of binding affinity with activity on the guinea-pig ileum.
[3H]白三烯 D4 与豚鼠肺膜结合的抑制。
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:5
- 作者:
Peter Norman;T. Abram;N. Cuthbert;P. Gardiner - 通讯作者:
P. Gardiner
Characterisation of the peptido-leukotriene receptor PL2 on the ferret spleen strip.
雪貂脾脏条上肽白三烯受体 PL2 的表征。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:5
- 作者:
P. Gardiner;Peter Norman;N. Cuthbert;Stephen R. Tudhope;T. Abram - 通讯作者:
T. Abram
Peter Norman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Norman', 18)}}的其他基金
Collaborative Research: Human Capital and Income Inequality
合作研究:人力资本与收入不平等
- 批准号:
0096585 - 财政年份:2001
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: On Human Capital and Income Inequality
合作研究:人力资本与收入不平等
- 批准号:
0001717 - 财政年份:2000
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Methods in Mathematicsand the Physical Sciences
数学科学:数学和物理科学的计算方法
- 批准号:
9312087 - 财政年份:1993
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Level Structures on Abelian Varieties
数学科学:阿贝尔簇的能级结构
- 批准号:
9000567 - 财政年份:1990
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Moduli of Abelian Varieties
数学科学:阿贝尔簇的模
- 批准号:
8702396 - 财政年份:1987
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Mathematical Sciences: P-Adic Theta Functions
数学科学:P-Adic Theta 函数
- 批准号:
8301254 - 财政年份:1983
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
- 批准号:
23H01028 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integration of Computer-Assisted Methods and Human Interactions to Understand Lesson Plan Quality and Teaching to Advance Middle-Grade Mathematics Instruction
计算机辅助方法和人机交互的整合,以了解课程计划的质量和教学,以推进中年级数学教学
- 批准号:
2300291 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Integrating Methods for Universal Design for Learning in Introductory Undergraduate Mathematics Courses
本科数学入门课程中通用学习设计的整合方法
- 批准号:
2142315 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
REU Site: Research Challenges of Computational Methods in Discrete Mathematics
REU 网站:离散数学计算方法的研究挑战
- 批准号:
2150299 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Pseudospectral Methods in Applied Mathematics
应用数学中的伪谱方法
- 批准号:
RGPIN-2017-03913 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Neural Network methods for machine learning with applications in Financial Mathematics
用于机器学习的贝叶斯神经网络方法及其在金融数学中的应用
- 批准号:
2746033 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Studentship
Applied mathematics master's degree - numerical methods for the incompressible Navier-Stokes equations
应用数学硕士学位 - 不可压缩纳维-斯托克斯方程的数值方法
- 批准号:
553966-2020 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Pseudospectral Methods in Applied Mathematics
应用数学中的伪谱方法
- 批准号:
RGPIN-2017-03913 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Novel mathematics and numerical methods for ferromagnetic problems
铁磁问题的新颖数学和数值方法
- 批准号:
DP190101197 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Discovery Projects
Pseudospectral Methods in Applied Mathematics
应用数学中的伪谱方法
- 批准号:
RGPIN-2017-03913 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual