A New Paradigm for the Analysis of Transient Saturated/Unsaturated Flow and Transport in Randomly Heterogeneous Soils
随机异质土壤中瞬态饱和/非饱和流动和输运分析的新范式
基本信息
- 批准号:9628133
- 负责人:
- 金额:$ 28.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-02-01 至 2001-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9628133 Neuman The objectives of this project are to develop (a) an exact conceptual/mathematical framework for the optimum prediction and analysis of transient saturated and unsaturated water flows in randomly heterogeneous subsurface environments, subject to arbitrary initial conditions, source terms, and boundary conditions; (b) a related conceptual/mathematical framework for the prediction and analysis of nonreactive solute transport under transient flow in saturated and partially saturated media; (c) associated low- and higher-order computational schemes for such flows and solute transport. The theoretical framework and computational methodology will rely on stochastically derived deterministic flow and transport equations which contain both local and nonlocal information-dependent parameters. In contrast to upscaled quantities which are often difficult to justify theoretically, or compare with measurements, all quantities entering into our equations will be defined on a scale compatible with potentially available field data (their support scale). The theoretical framework will contain explicit expressions to assess prediction uncertainty. When the properties of a soil vary randomly in space, the corresponding flow and transport equations are stochastic. To solve them analytically, the equations must be linear(ized) and the soil properties severely restricted. To solve them numerically by (conditional) Monte Carlo simulation is computationally intensive and does not usually guarantee convergence. Ideally, the Monte Carlo method converges to a (conditional) mean solution which constitutes an optimum unbiased predictor of system behavior under uncertainly, and a (contional) variance which measures prediction uncertainly. Our aim is to circumvent the need for Monte Carlo simulations by evaluating these (conditional ) moments deterministically. For this, we propose to first derive exact flow and transport equations that govern the space-time evolution of these moments, then solv e them numerically by approximation. We expect such flow and transport equations to be integro-differential, hence nonlocal, non-Darcian, and non-Fickian. We refer to this new solution paradigm as "smoothing". Contrary to upscaling in which a grid must be defined a priori on the basis of ad hoc criteria, here the grid is defined a posteriori based on how smooth the moment functions are expected to be. Their smoothness is controlled in part by the quanlity and distribution of conditioning (measurement) points in space-time. In most cases such points are sparse enough to render the moment functions much smoother than are their random counterparts. Hence a grid required to resolve the former is usually much coarser than that required to resolve the latter. The net result should be a considerable saving in computer time and storage when compared to the Monte Carlo method. Exact conditional moment equations have been developed for steady state saturated flow by Neuman and Orr (1993), and for nonreactive solute transport by Neuman (1993) and Zhang and Neuman (1995e). These nonlocal equations involve local and nonlocal flow and transport parameters that are conditional on data and thus nonunique. Though the equations are exact, their nonlocal parameters cannot be evaluated directly without either high-resolution Monte Carlo simulation or approximation; a third option is to estimate them indirectly by inverse methods. We propose to extend the above nonlocal flow and transport theories to transient saturated and unsaturated flow conditions; to develop suitable approximations for the corresponding parameters; and to develop computational schemes for the solution of the corresponding nonlocal mean flow and transport equations, as well as for the assessment of the corresponding prediction errors.
小行星9628133 本项目的目标是:(a)建立一个精确的概念/数学框架,用于最佳地预测和分析随机非均匀地下环境中的瞬态饱和和非饱和水流,这些水流受任意初始条件、源项和边界条件的影响;(B)相关概念/在饱和和部分饱和介质中瞬态流动下非反应性溶质运移的预测和分析的数学框架;(c)这种流动和溶质输运的相关低阶和高阶计算方案。 理论框架和计算方法将依赖于随机推导的确定性流和输运方程,其中包含本地和非本地信息依赖的参数。 与通常难以在理论上证明或与测量值进行比较的放大量相比,进入我们方程的所有量将在与潜在可用的现场数据(其支持尺度)兼容的尺度上定义。 理论框架将包含明确的表达式来评估预测的不确定性。 当土的性质在空间上随机变化时,相应的流动和输运方程是随机的。 要解析求解这些方程,方程必须是线性的,并且土壤性质受到严格的限制。 通过(条件)Monte Carlo模拟数值求解它们是计算密集型的,并且通常不能保证收敛。 理想情况下,蒙特卡罗方法收敛到一个(条件)平均解,它构成了不确定性下系统行为的最佳无偏预测器,以及一个(条件)方差,它测量预测不确定性。 我们的目标是规避蒙特卡罗模拟的需要,通过评估这些(条件)的时刻确定性。 为此,我们建议首先推导出精确的流动和输运方程,这些时刻的时空演化,然后求解它们的数值近似。 我们期望这样的流动和输运方程是积分-微分方程,因此是非局部的、非达西的和非菲克的。 我们把这种新的解决方案范例称为“平滑”。 与其中网格必须基于特设标准先验地定义的尺度放大相反,在这里,网格基于期望的矩函数的平滑程度来后验地定义。 它们的光滑性部分地由时空中条件(测量)点的质量和分布控制。 在大多数情况下,这样的点是稀疏的,足以使矩函数比它们的随机对应物更平滑。 因此,解决前者所需的网格通常比解决后者所需的网格粗糙得多。 与蒙特卡罗方法相比,净结果应在计算机时间和存储方面节省大量时间。 Neuman和Orr(1993)已经为稳态饱和流建立了精确的条件矩方程,Neuman(1993)和Zhang和Neuman(1995 e)为非反应性溶质运移建立了精确的条件矩方程。 这些非局部方程涉及局部和非局部的流动和运输参数的数据条件,因此非唯一的。 虽然方程是精确的,但它们的非局部参数不能在没有高分辨率蒙特卡罗模拟或近似的情况下直接计算;第三种选择是通过逆方法间接估计它们。 我们建议将上述非局部流动和运输理论扩展到瞬态饱和和不饱和流动条件;为相应的参数开发合适的近似;并开发相应的非局部平均流动和运输方程的解决方案的计算方案,以及相应的预测误差的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shlomo Neuman其他文献
Shlomo Neuman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shlomo Neuman', 18)}}的其他基金
Coping With Conceptual Uncertainty: A Maximum Likelihood Bayesian Model Averaging Approach
应对概念不确定性:最大似然贝叶斯模型平均方法
- 批准号:
0407123 - 财政年份:2004
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
ITR/AP: Forward and Inverse Conditional Moment Algorithms for Flow and Transport in Multiscale, Randomly Heterogeneous Hydrogeologic Environments Under Uncertainty
ITR/AP:不确定性下多尺度、随机异质水文地质环境中流动和输运的正向和逆向条件矩算法
- 批准号:
0110289 - 财政年份:2001
- 资助金额:
$ 28.38万 - 项目类别:
Continuing Grant
Special Foreign Currency Travel Support (In Indian Currency)To Confer With Scientists of Osmania University; Hyderabad, India; Dec 20, 1979 - Jan 18, 1980
特别外币旅行支持(印度货币)与奥斯曼尼亚大学科学家协商;
- 批准号:
7926075 - 财政年份:1979
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
Dynamics of Land Subsidence Due to Subsurface Fluid Withdrawal
地下流体抽取引起的地面沉降动态
- 批准号:
7806015 - 财政年份:1978
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
相似国自然基金
范型(Paradigm)统一化问题
- 批准号:68783007
- 批准年份:1987
- 资助金额:3.0 万元
- 项目类别:专项基金项目
相似海外基金
CIF: Small: Deep Stochastic Geometry: A New Paradigm for Wireless Network Analysis and Design
CIF:小:深度随机几何:无线网络分析和设计的新范式
- 批准号:
2007498 - 财政年份:2020
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
Political economy of Forecast-Based Action in the context of the 'new humanitarianism' paradigm: a multi-scalar analysis of anticipatory intervention
“新人道主义”范式背景下基于预测的行动的政治经济学:预期干预的多尺度分析
- 批准号:
2133223 - 财政年份:2018
- 资助金额:
$ 28.38万 - 项目类别:
Studentship
CAREER: The restricted nonlinear framework: A new paradigm for modeling, analysis and control of wall-bounded turbulent flows
职业:受限非线性框架:壁面湍流建模、分析和控制的新范式
- 批准号:
1652244 - 财政年份:2017
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
Non-invasive chemical analysis of stone artifacts: re-discover and construct new paradigm of nephrite artifacts in Asian prehistory
石制品的非侵入性化学分析:重新发现并构建亚洲史前软玉制品的新范式
- 批准号:
17H06707 - 财政年份:2017
- 资助金额:
$ 28.38万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A New Paradigm in Joint Registration, Analysis and Modeling of Function Data
函数数据联合配准、分析和建模的新范式
- 批准号:
1208959 - 财政年份:2012
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
CDI Type-II: Collaborative Research: From Ion Channels to Blood Flow and Heart Sounds: A New Paradigm in Cyber-Enabled Multiphysical Analysis of Heart Function
CDI II 型:协作研究:从离子通道到血流和心音:网络支持的心脏功能多物理分析的新范式
- 批准号:
1124813 - 财政年份:2011
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
CDI Type-II: Collaborative Research: From Ion Channels to Blood Flow and Heart Sounds: A New Paradigm in Cyber-Enabled Multiphysical Analysis of Heart Function
CDI II 型:协作研究:从离子通道到血流和心音:网络支持的心脏功能多物理分析的新范式
- 批准号:
1124804 - 财政年份:2011
- 资助金额:
$ 28.38万 - 项目类别:
Standard Grant
Design and analysis of a new paradigm in high speed digital signal transmission and reception schemes
高速数字信号传输和接收方案新范例的设计和分析
- 批准号:
363357-2008 - 财政年份:2010
- 资助金额:
$ 28.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Efficient Probabilistic Approach Using Order Reduction and Hybrid Models -- A New Paradigm for Structural Dynamic Analysis
协作研究:使用降阶和混合模型的高效概率方法——结构动态分析的新范式
- 批准号:
0926803 - 财政年份:2009
- 资助金额:
$ 28.38万 - 项目类别:
Continuing Grant
A New Paradigm for Integrated Analysis of Multiscale Genomic Imaging Datasets
多尺度基因组成像数据集集成分析的新范式
- 批准号:
7845601 - 财政年份:2009
- 资助金额:
$ 28.38万 - 项目类别: