A New Paradigm in Joint Registration, Analysis and Modeling of Function Data

函数数据联合配准、分析和建模的新范式

基本信息

  • 批准号:
    1208959
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The dual problems of registration and analysis of functional data are very important in statistical analysis. They play important roles in applications involving phase-amplitude separation of real-valued functions, shape analysis of curves and surfaces, registration of 2D and 3D images, and analysis of longitudinal data with values on nonlinear manifolds. The PIs develop a novel framework that will lead to statistically consistent functional analysis and will substantially improve algorithmic performances over the current methods. The key novelty is to use Riemannian methods and distance-based objective functions that are: (1) designed for measuring registration levels of functions explicitly, (2) studied in the quotient spaces of functions modulo the registration groups, and (3) formulated for ensuing statistical analysis/modeling. Here one represents registration variability by actions of the domain-warping groups on function spaces, chooses an appropriate Riemannian metric (such that the group actions are by isometries) and studies novel mathematical representations that enable statistical analysis under such metrics. The main advantage is that both registration and analysis, e.g, computation of mean, covariance, PCA, are performed jointly under the same metric rather than the current practice of using sequential and disjoint steps. Preliminary results on some subproblems including real-valued function registration and shape analysis of curves are shown to be superior, both empirically and theoretically, to the current approaches. The goal is to broaden this research to a larger class of registration problems with similar fundamental solutions. High-dimensional functional data is becoming omnipresent in today's society and one needs to nonlinearly align such observations in time and space, in order to improve data analysis, statistical modeling, and inferences. This project represents a multi-disciplinary effort that will develop both basic statistical science and computational tools for registration of functional data. This, in turn, will impact such data-rich applications as development of accurate growth charts for children, gene expression analysis, face recognition using images and videos, detection and evaluation of brain disorders (e.g. Alzheimer) using medical images, and human activity recognition using surveillance video data. The novelty and potential high returns of this project come from the variety of tools utilized---from differential geometry and statistics to imaging science.
功能数据的配准和分析是统计分析中的重要问题。 它们在实值函数的相位-振幅分离、曲线和曲面的形状分析、2D和3D图像的配准以及非线性流形上的纵向数据分析等应用中发挥着重要作用。PI开发了一个新的框架,这将导致统计上一致的功能分析,并将大大提高算法性能超过目前的方法。关键的新奇是使用黎曼方法和基于距离的目标函数:(1)设计用于显式测量功能的配准水平,(2)在功能模配准组的商空间中进行研究,以及(3)制定用于随后的统计分析/建模。在这里,一个代表注册的功能空间上的域扭曲组的行动的变化,选择一个适当的黎曼度量(这样的组的行动是由等距)和研究新的数学表示,使统计分析下这样的度量。其主要优点是,注册和分析,例如,计算的平均值,协方差,PCA,共同执行下相同的度量,而不是目前的做法,使用顺序和不相交的步骤。一些子问题,包括实值函数注册和形状分析曲线的初步结果被证明是上级,无论是经验和理论,目前的方法。我们的目标是扩大这项研究,以更大的一类注册问题,类似的基本解决方案。高维函数数据在当今社会中变得无处不在,人们需要在时间和空间上非线性地对齐这些观察,以改进数据分析,统计建模和推理。该项目是一个多学科的努力,将开发基础统计科学和计算工具,用于功能数据的登记。这反过来又会影响到数据丰富的应用,如儿童准确生长图表的开发,基因表达分析,使用图像和视频的面部识别,使用医学图像检测和评估大脑疾病(如阿尔茨海默病),以及使用监控视频数据识别人类活动。这个项目的新奇和潜在的高回报来自于所使用的各种工具-从微分几何和统计到成像科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Srivastava其他文献

Statistical Modeling of Functional Data
功能数据的统计建模
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Srivastava;E. Klassen
  • 通讯作者:
    E. Klassen
Estimating summary statistics in the spike-train space
估计尖峰序列空间中的汇总统计数据
Structure-based RNA Function Prediction Using Elastic Shape Analysis
使用弹性形状分析进行基于结构的 RNA 功能预测
Chapter 9 - Image Analysis and Recognition
第9章-图像分析与识别
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Srivastava
  • 通讯作者:
    Anuj Srivastava
Geometric Analysis of Axonal Tree Structures
轴突树结构的几何分析

Anuj Srivastava的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Srivastava', 18)}}的其他基金

CDS&E: Geometrical Regression Models Involving Complex Shape Variables
CDS
  • 批准号:
    1953087
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI:Medium: Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
  • 批准号:
    1955154
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Workshop on Applications-Driven Geometric Functional Data Analysis
应用驱动的几何函数数据分析研讨会
  • 批准号:
    1710802
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Geometrical and Statistical Modeling of Space-Time symmetries for Human Action Analysis and Retraining
CIF:小型:协作研究:用于人类行为分析和再训练的时空对称性的几何和统计建模
  • 批准号:
    1617397
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CDS&E: Computational Riemannian Approaches for Statistical Analysis and Modeling of Complex Structures
CDS
  • 批准号:
    1621787
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Geometry-aware and data-adaptive signal processing for resource constrained activity analysis
CIF:小型:协作研究:用于资源受限活动分析的几何感知和数据自适应信号处理
  • 批准号:
    1319658
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Ontology based Perceptual Organization of Audio-Video Events using Pattern Theory
RI:小型:协作研究:使用模式理论对音频-视频事件进行基于本体的感知组织
  • 批准号:
    1217515
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MCS: Research on Detection and Classification of 2D and 3D Shapes in Cluttered Point Clouds
MCS:杂乱点云中 2D 和 3D 形状的检测和分类研究
  • 批准号:
    0915003
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Development of Geometrical and Statistical Models for Automated Object Recognition
FRG:自动对象识别的几何和统计模型的开发
  • 批准号:
    0101429
  • 财政年份:
    2001
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

范型(Paradigm)统一化问题
  • 批准号:
    68783007
  • 批准年份:
    1987
  • 资助金额:
    3.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
  • 批准号:
    DP240101590
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Projects
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FDSS Track 1: A New Paradigm for Faculty Development in Geospace Science at Georgia Tech
FDSS Track 1:佐治亚理工学院地球空间科学教师发展的新范式
  • 批准号:
    2347873
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
III: Small: Query-By-Sketch: Simplifying Video Clip Retrieval Through A Visual Query Paradigm
III:小:按草图查询:通过可视化查询范式简化视频剪辑检索
  • 批准号:
    2335881
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
  • 批准号:
    DP240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Projects
Targeting Inhibitory kappa B kinase alpha (IKKalpha): a new treatment paradigm for inflammatory-driven cancers
靶向抑制性 kappa B 激酶 alpha (IKKalpha):炎症驱动的癌症的新治疗范例
  • 批准号:
    MR/Y015479/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
LEAP-HI: Towards a Paradigm of Thrombosis-Free Blood-contacting Devices
LEAP-HI:迈向无血栓血液接触装置的典范
  • 批准号:
    2245427
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Redesigning the Human-AI Interaction Paradigm for Improving AI-Assisted Decision Making
职业:重新设计人机交互范式以改善人工智能辅助决策
  • 批准号:
    2340209
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了