Efficient Fair Queuing and Load Balancing
高效的公平队列和负载均衡
基本信息
- 批准号:9628190
- 负责人:
- 金额:$ 28.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Internet traffic is growing rapidly due to the immense popularity of the World Wide Web and new multimedia services such as video-conferencing. The increased traffic volume requires higher speed (Gigabit/sec or higher) links, while some of the new traffic varieties (such as audio and video) also demand quality-of-service guarantees. This proposal addresses the problem of providing high speed links by combining multiple low speed links and performing load balancing. It also address the problem of providing quality of service guarantees for high speed links through the design of efficient fair queuing algorithms. The proposal is concerned with the design, evaluation, and implementation of new and efficient fair queuing and load balancing algorithms. Although these two problems may look quite different at a first glance, the Pis show that fair queuing algorithms can be converted into load balancing algorithms using a time-reversal argument. Existing mechanisms for fair queuing either are computationally expensive, or they fail to provide the necessary service guarantees (e.g., good bounds on latency and throughput) required by many applications. The PIs develop a new fair queuing scheme called Tandem Clock Fair Queuing, which offers quality-of-service guarantees comparable to those of the best previous schemes (such as Weighted Fair Queuing), and yet appears to admit efficient implementations. Existing methods for load balancing provide inadequate load sharing in the presence of variable length packets, and may result in non-FIFO delivery of data if packet headers are not allowed to be modified. The PIs describe new load balancing schemes that solve these two problems by transforming fair queuing schemes into load balancing schemes, and by using the twin mechanisms of logical reception and sender simulation. The investigators propose to refine and extend these new directions in fair queuing and load balancing algorithms into complete and workable schem es that can be deployed in the Internet and other real networks. They plan to evaluate and refine our schemes using a combination of mathematical analysis, simulations, and actual implementation using a testbed.
由于万维网和新的多媒体服务(如视频会议)的巨大普及,因特网通信量正在迅速增长。 增加的通信量需要更高速度(千兆位/秒或更高)的链路,而一些新的通信种类(如音频和视频)也需要服务质量保证。 该提议通过组合多个低速链路并执行负载平衡来解决提供高速链路的问题。 它还解决了通过设计高效的公平排队算法为高速链路提供服务质量保证的问题。 该建议涉及新的和有效的公平排队和负载平衡算法的设计,评估和实施。 虽然这两个问题乍一看可能很不一样,但PI表明,公平排队算法可以转换为使用时间反转参数的负载平衡算法。 用于公平排队的现有机制或者在计算上是昂贵的,或者它们不能提供必要的服务保证(例如,等待时间和吞吐量的良好界限)。 PI开发了一种新的公平排队方案,称为串联时钟公平排队,它提供的服务质量保证可与以前最好的方案(如加权公平排队)相媲美,但似乎承认有效的实现。 现有的用于负载平衡的方法在存在可变长度分组的情况下提供不充分的负载共享,并且如果不允许修改分组报头,则可能导致数据的非FIFO递送。 PI描述了新的负载平衡方案,通过将公平排队方案转换为负载平衡方案,并通过使用逻辑接收和发送方模拟的双重机制来解决这两个问题。 研究人员建议将公平排队和负载均衡算法中的这些新方向改进和扩展为可以部署在Internet和其他真实的网络中的完整和可行的方案。 他们计划使用数学分析、模拟和使用测试平台的实际实施相结合的方法来评估和改进我们的方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhash Suri其他文献
A linear time algorithm for minimum link paths inside a simple polygon
- DOI:
10.1016/0734-189x(86)90070-8 - 发表时间:
1986-04-01 - 期刊:
- 影响因子:
- 作者:
Subhash Suri - 通讯作者:
Subhash Suri
Pursuit Evasion on Polyhedral Surfaces
- DOI:
10.1007/s00453-015-9988-7 - 发表时间:
2015-04-29 - 期刊:
- 影响因子:0.700
- 作者:
Kyle Klein;Subhash Suri - 通讯作者:
Subhash Suri
Range Counting over Multidimensional Data Streams
- DOI:
10.1007/s00454-006-1269-4 - 发表时间:
2006-09-12 - 期刊:
- 影响因子:0.600
- 作者:
Subhash Suri;Csaba D. Toth;Yunhong Zhou - 通讯作者:
Yunhong Zhou
Computing euclidean maximum spanning trees
- DOI:
10.1007/bf01840396 - 发表时间:
1990-06-01 - 期刊:
- 影响因子:0.700
- 作者:
Clyde Monma;Michael Paterson;Subhash Suri;Frances Yao - 通讯作者:
Frances Yao
Algorithmic issues in modeling motion
运动建模中的算法问题
- DOI:
10.1145/592642.592647 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Pankaj K. Agarwal;Leonidas J. Guibas;H. Edelsbrunner;Jeff Erickson;M. Isard;Sariel Har;J. Hershberger;Christian Jensen;L. Kavraki;Patrice Koehl;Ming Lin;Dinesh Manocha;Dimitris Metaxas;Brian Mirtich;David Mount;S. Muthukrishnan;Dinesh Pai;E. Sacks;J. Snoeyink;Subhash Suri;Ouri E. Wolfson;Merl Mirtich@merl Com - 通讯作者:
Merl Mirtich@merl Com
Subhash Suri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhash Suri', 18)}}的其他基金
AF: Small: New Directions in Geometric Shortest Paths
AF:小:几何最短路径的新方向
- 批准号:
1814172 - 财政年份:2018
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
AF: Small: Geometric Methods for Network Science
AF:小:网络科学的几何方法
- 批准号:
1525817 - 财政年份:2015
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Uncertainty Aware Geometric Computing
AF:媒介:协作研究:不确定性感知几何计算
- 批准号:
1161495 - 财政年份:2012
- 资助金额:
$ 28.46万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Minimalist Mapping and Monitoring
RI:媒介:协作研究:极简制图和监测
- 批准号:
0904501 - 财政年份:2009
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
Geometric Approaches to Ad Hoc and Sensor Networks
Ad Hoc 和传感器网络的几何方法
- 批准号:
0612299 - 财政年份:2006
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
NeTS-NOSS: Collaborative Research: Lightweight Monitoring Tools for Sensor Networks
NeTS-NOSS:协作研究:传感器网络的轻量级监控工具
- 批准号:
0626954 - 财政年份:2006
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
Geometric Computing over Distributed and Streaming Data
分布式和流数据的几何计算
- 批准号:
0514738 - 财政年份:2005
- 资助金额:
$ 28.46万 - 项目类别:
Continuing Grant
ITR/PE+SY: Collaborative Research: Foundations of Electronic Marketplaces: Game Theory, Algorithms and Systems
ITR/PE SY:合作研究:电子市场基础:博弈论、算法和系统
- 批准号:
0121562 - 财政年份:2001
- 资助金额:
$ 28.46万 - 项目类别:
Continuing Grant
Geometric Problems in Graphics, Databases and Networking
图形、数据库和网络中的几何问题
- 批准号:
0049093 - 财政年份:2000
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
Geometric Problems in Graphics, Databases and Networking
图形、数据库和网络中的几何问题
- 批准号:
9901958 - 财政年份:1999
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
相似国自然基金
FAIR-数据驱动新材料研究
- 批准号:
- 批准年份:2021
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
PANDA/FAIR上粲重子产生的理论研究
- 批准号:11247298
- 批准年份:2012
- 资助金额:5.0 万元
- 项目类别:专项基金项目
相似海外基金
Tri-fair Biometrics: 生体認証の3要件を満たす公平な生体認証システムの実現
Tri-fair Biometrics:实现公平的生物识别认证系统,满足生物识别认证的三个要求
- 批准号:
23K28085 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fair Game: valuing the bio-cultural heritage of fallow deer and their venison for food security, sustainable woodlands and biodiversity
公平游戏:重视小鹿及其鹿肉的生物文化遗产,以促进粮食安全、可持续林地和生物多样性
- 批准号:
AH/Z505675/1 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Research Grant
(Un)Fair inequality in the labor market: A global study
(Un)劳动力市场的公平不平等:一项全球研究
- 批准号:
MR/X033333/1 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Fellowship
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Continuing Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Standard Grant
Fair and modular blockchain data infrastructure for open science and society (FairOnChain)
用于开放科学和社会的公平和模块化区块链数据基础设施(FairOnChain)
- 批准号:
EP/Y036247/1 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Research Grant
Making Software FAIR: A machine-assisted workflow for the research software lifecycle
让软件公平:研究软件生命周期的机器辅助工作流程
- 批准号:
EP/Y036352/1 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Research Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Continuing Grant
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
- 批准号:
EP/Y036395/1 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Research Grant














{{item.name}}会员




