Geometric Computing over Distributed and Streaming Data
分布式和流数据的几何计算
基本信息
- 批准号:0514738
- 负责人:
- 金额:$ 30.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational geometry algorithms traditionally have been designed for centralized data settings, where the data are available to algorithms locally and in a persistent form. Yet, a growing number of emerging applications no longer fit such a conventional data model. For instance, in sensor networks and location-aware mobile computing, data is geographically distributed, and in high-volume data monitoring, such as analysis of Internet traffic or web clicks, data must be processed as a stream, without being stored. Motivated by these technological trends, the investigator develops distributed algorithms for geometric computing.Designing mathematically grounded geometric algorithms for distributed or streaming data is challenging because the algorithms must operate with limited computational resources. In particular, nodes in a sensor network have very limited battery power, memory, and bandwidth, and so collecting data from the network requires nodes to construct approximations of their spatial measurements. Similarly, data stream algorithms must process the data in a single pass and compute synopsis data structures that summarize important features of the data. This research develops novel geometric algorithms and data structures that deal with insufficient resources (bandwidth, memory, power) in a graceful manner, so that the solution quality adapts to the resources available --- the better the resources, higher the solution quality. In particular, the research proposes such resource-adaptive methods to discover epsilon-cuts in sensor networks, compute bounded-memory approximations of sensor observations, discover hierarchical heavy hitters in multi-dimensional data streams, and shape-preserving clustering methods for geometric streams. Many challenges of national importance concern the protection of our physical as well as cyber infrastructures. Being able to monitor these systems remotely and analyze their data with flexible, resource-adaptive, and programmable software tools is critically important. Because many of these systems deal with distributed or streaming data, this research has direct relevance to those applications.
计算几何算法传统上是为集中式数据设置而设计的,其中数据在本地以持久形式可供算法使用。然而,越来越多的新兴应用程序不再适合这种传统的数据模型。例如,在传感器网络和位置感知移动计算中,数据是地理分布的,在大容量数据监控中,如分析互联网流量或网络点击,数据必须作为流处理,而不是存储。在这些技术趋势的推动下,研究人员开发了用于几何计算的分布式算法。为分布式或流数据设计数学基础的几何算法是具有挑战性的,因为算法必须在有限的计算资源下运行。特别是,传感器网络中的节点的电池功率、内存和带宽非常有限,因此从网络收集数据需要节点构建其空间测量的近似值。同样,数据流算法必须在单遍中处理数据,并计算总结数据重要特征的概要数据结构。这项研究开发了新的几何算法和数据结构,以优雅的方式处理资源(带宽、内存、功率)不足的问题,从而使解的质量与可用的资源相适应-资源越好,解的质量越高。特别是,研究提出了这样的资源自适应方法来发现传感器网络中的epsilon割,计算传感器观测的有限内存近似,发现多维数据流中的分层重击发者,以及几何数据流的保形聚类方法。许多对国家具有重大意义的挑战涉及到保护我们的物理和网络基础设施。能够使用灵活、资源自适应和可编程的软件工具远程监控这些系统并分析其数据至关重要。由于这些系统中的许多都处理分布式或流数据,因此本研究与这些应用程序具有直接的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhash Suri其他文献
A linear time algorithm for minimum link paths inside a simple polygon
- DOI:
10.1016/0734-189x(86)90070-8 - 发表时间:
1986-04-01 - 期刊:
- 影响因子:
- 作者:
Subhash Suri - 通讯作者:
Subhash Suri
Pursuit Evasion on Polyhedral Surfaces
- DOI:
10.1007/s00453-015-9988-7 - 发表时间:
2015-04-29 - 期刊:
- 影响因子:0.700
- 作者:
Kyle Klein;Subhash Suri - 通讯作者:
Subhash Suri
Range Counting over Multidimensional Data Streams
- DOI:
10.1007/s00454-006-1269-4 - 发表时间:
2006-09-12 - 期刊:
- 影响因子:0.600
- 作者:
Subhash Suri;Csaba D. Toth;Yunhong Zhou - 通讯作者:
Yunhong Zhou
Computing euclidean maximum spanning trees
- DOI:
10.1007/bf01840396 - 发表时间:
1990-06-01 - 期刊:
- 影响因子:0.700
- 作者:
Clyde Monma;Michael Paterson;Subhash Suri;Frances Yao - 通讯作者:
Frances Yao
Algorithmic issues in modeling motion
运动建模中的算法问题
- DOI:
10.1145/592642.592647 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Pankaj K. Agarwal;Leonidas J. Guibas;H. Edelsbrunner;Jeff Erickson;M. Isard;Sariel Har;J. Hershberger;Christian Jensen;L. Kavraki;Patrice Koehl;Ming Lin;Dinesh Manocha;Dimitris Metaxas;Brian Mirtich;David Mount;S. Muthukrishnan;Dinesh Pai;E. Sacks;J. Snoeyink;Subhash Suri;Ouri E. Wolfson;Merl Mirtich@merl Com - 通讯作者:
Merl Mirtich@merl Com
Subhash Suri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhash Suri', 18)}}的其他基金
AF: Small: New Directions in Geometric Shortest Paths
AF:小:几何最短路径的新方向
- 批准号:
1814172 - 财政年份:2018
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
AF: Small: Geometric Methods for Network Science
AF:小:网络科学的几何方法
- 批准号:
1525817 - 财政年份:2015
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Uncertainty Aware Geometric Computing
AF:媒介:协作研究:不确定性感知几何计算
- 批准号:
1161495 - 财政年份:2012
- 资助金额:
$ 30.51万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Minimalist Mapping and Monitoring
RI:媒介:协作研究:极简制图和监测
- 批准号:
0904501 - 财政年份:2009
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
Geometric Approaches to Ad Hoc and Sensor Networks
Ad Hoc 和传感器网络的几何方法
- 批准号:
0612299 - 财政年份:2006
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
NeTS-NOSS: Collaborative Research: Lightweight Monitoring Tools for Sensor Networks
NeTS-NOSS:协作研究:传感器网络的轻量级监控工具
- 批准号:
0626954 - 财政年份:2006
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
ITR/PE+SY: Collaborative Research: Foundations of Electronic Marketplaces: Game Theory, Algorithms and Systems
ITR/PE SY:合作研究:电子市场基础:博弈论、算法和系统
- 批准号:
0121562 - 财政年份:2001
- 资助金额:
$ 30.51万 - 项目类别:
Continuing Grant
Geometric Problems in Graphics, Databases and Networking
图形、数据库和网络中的几何问题
- 批准号:
0049093 - 财政年份:2000
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
Geometric Problems in Graphics, Databases and Networking
图形、数据库和网络中的几何问题
- 批准号:
9901958 - 财政年份:1999
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
Efficient Fair Queuing and Load Balancing
高效的公平队列和负载均衡
- 批准号:
9628190 - 财政年份:1996
- 资助金额:
$ 30.51万 - 项目类别:
Continuing Grant
相似海外基金
Computing over Compressed Graph-Structured Data
压缩图结构数据的计算
- 批准号:
EP/X039447/1 - 财政年份:2024
- 资助金额:
$ 30.51万 - 项目类别:
Research Grant
Accelerating the computation of air quality projections over India using novel computing
使用新型计算加速印度空气质量预测的计算
- 批准号:
2890051 - 财政年份:2023
- 资助金额:
$ 30.51万 - 项目类别:
Studentship
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
- 批准号:
561415-2020 - 财政年份:2022
- 资助金额:
$ 30.51万 - 项目类别:
Alliance Grants
CRII: SaTC: Enabling Secure Machine Learning Queries over Encrypted Database in Cloud Computing
CRII:SaTC:在云计算中的加密数据库上启用安全机器学习查询
- 批准号:
2153393 - 财政年份:2022
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
CAREER: Heterogeneous Elastic Computing over the Cloud - from Theory to Practice
职业:云上的异构弹性计算 - 从理论到实践
- 批准号:
2145835 - 财政年份:2022
- 资助金额:
$ 30.51万 - 项目类别:
Continuing Grant
SYNTHEMA: Synthetic generation of hematological data over federated computing frameworks
SYNTHEMA:通过联合计算框架合成生成血液学数据
- 批准号:
10054278 - 财政年份:2022
- 资助金额:
$ 30.51万 - 项目类别:
EU-Funded
Enabling Sustainable Ultra Reliable Computing and Communications over 5G+ Wireless Technologies
通过 5G 无线技术实现可持续的超可靠计算和通信
- 批准号:
561415-2020 - 财政年份:2021
- 资助金额:
$ 30.51万 - 项目类别:
Alliance Grants
Collaborative Research: CNS Core: Small: Timely Computing and Learning over Communication Networks
合作研究:CNS 核心:小型:通过通信网络进行及时计算和学习
- 批准号:
2114542 - 财政年份:2021
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Timely Computing and Learning over Communication Networks
合作研究:CNS 核心:小型:通过通信网络进行及时计算和学习
- 批准号:
2114537 - 财政年份:2021
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Distributed Sensing & Computing Over Sparse Environments (DISCOVER) Platform
合作研究:CCRI:新:分布式传感
- 批准号:
2120485 - 财政年份:2021
- 资助金额:
$ 30.51万 - 项目类别:
Standard Grant