Biomimetic Integration of Organic and Inorganic Phases into Composite Materials
有机相和无机相仿生整合到复合材料中
基本信息
- 批准号:9634396
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract DMR-9634396 Stucky A team of investigators from University of California, Santa Barbara, in collaboration with researchers at DuPont, propose to develop methods for defining patterning in inorganic/organic composite materials in order to control shape, strength, and thermal transport. The biomimetic patterning that is sought includes both the spatial relationships between the organic and inorganic phases and the long-range hierarchical ordering of the resulting macrostructures. A known method of creating composite materials with well defined patterning is the cooperative assembly of organic surfactants and molecular inorganic species into mesocomposites. In this synthesis, the patterning in the final product is under control of the inorganic/organic interface. The proposed research will address the use of polymer-surfactant assemblies and polymerized inorganic phases to create materials with patterning on longer length scales. Particular emphasis will be placed on using inexpensive calcium carbonate or calcium sulfate as the inorganic phase. The exceptional fracture resistance of sea shells, which are a composite of calcium carbonate and only 1-2% organic material, demonstrates that even inorganic materials that are inherently brittle can be used to form tough composite materials. One of the major determinants of the toughness of shells is the long-range pattering of tabular aragonite crystals in an organic matrix. The process by which the red abalone controls the formation of this structure will be investigated to understand how this complex, tough composite material is synthesized, and knowledge obtained from the biosynthetic system will be applied to the synthesis of composite materials. While patterning on the micrometer length scale in biological systems is thought to be under control of the templating organic species, patterning on longer length scales is believed to be due to a reaction-diffusion mechanism. This research will address composite patterning by nonlinear dynamic reactions, including clock reactions and reaction-diffusion reactions, by tailoring the conditions to the growth of appropriate solid materials. The results of these studies will provide methods for controlling the three-dimensional properties of inorganic/organic composite materials by defining the patterning of the inorganic and organic phases over well defined length scales. %%% One of the accomplishments of nature that has not been emulated by man is the simultaneous synthesis and shaping of constructed objects. The spider and silkworm synthesize silk as they spin it; the molluscs prepare calcium carbonate directly in the desired architecture. The research described in this proposal explores the integration of organic and inorganic phases into patterned composite materials using inorganic/organic interfaces and non-equilibrium chemistry. The premier polymer science and technology which has been developed over many decades at DuPont Central Research and Development will be combined with the academic bio and materials science capabilities at the University of California, Santa Barbara, to provide an industrial, high technology environment for the training of students and execution of the research. In these studies, in vivo biological studies are used to guide the development of the in vitro biomimetic chemistry. The biomimetics approach is interpreted as being well beyond visual similarities or the two-dimensional coating of surfaces, but is viewed in terms of the three- dimensional, long range patterned control of composition, hierarchical structure and nanophase space properties. Organic and inorganic cooperative control of composite assembly, polymer structure direction of patterned inorganic organization, and space time nonequilibrium syntheses will be investigated to achieve this goal. The approaches outlined above, taken in the context of a molecular level understanding of the often elaborate and highly long range ordered assembly of biomateria ls, will lead to the practical design of technologically useful materials with specific properties over sharply defined length scales.
摘要 DMR-9634396 Stucky 来自加州大学圣巴巴拉分校的一组研究人员与杜邦公司的研究人员合作,提出开发定义无机/有机复合材料图案的方法,以控制形状、强度和热传输。所寻求的仿生图案化包括有机相和无机相之间的空间关系以及所得到的宏观结构的长程层次排序。产生具有良好限定的图案化的复合材料的已知方法是有机表面活性剂和分子无机物质协同组装成介观复合材料。在这种合成中,最终产品中的图案化受到无机/有机界面的控制。拟议的研究将解决使用聚合物-表面活性剂组件和聚合无机相来创建具有较长长度尺度图案的材料。将特别强调使用廉价的碳酸钙或硫酸钙作为无机相。贝壳是碳酸钙和仅1-2%有机材料的复合材料,其优异的抗断裂性表明,即使是固有易碎的无机材料也可以用于形成坚韧的复合材料。贝壳韧性的主要决定因素之一是有机基质中片状文石晶体的长程图案。将研究红鲍鱼控制这种结构形成的过程,以了解这种复杂、坚韧的复合材料是如何合成的,并将从生物合成系统中获得的知识应用于复合材料的合成。虽然认为生物系统中微米长度尺度上的图案化受模板有机物质的控制,但认为较长长度尺度上的图案化是由于反应-扩散机制。本研究将通过非线性动力学反应,包括时钟反应和反应扩散反应,通过定制合适的固体材料的生长条件来解决复合图案化。 这些研究的结果将提供控制的无机/有机复合材料的三维性能的方法,通过定义的图案的无机和有机相在良好定义的长度尺度。 自然的成就之一,还没有被人类模仿,是同时合成和塑造建筑物。蜘蛛和蚕在吐丝的过程中合成丝;软体动物直接在所需的结构中制备碳酸钙。该提案中描述的研究探索了使用无机/有机界面和非平衡化学将有机和无机相整合到图案化复合材料中。杜邦中心研发部几十年来开发的一流聚合物科学和技术将与加州大学圣巴巴拉分校的学术生物和材料科学能力相结合,为学生培训和研究执行提供工业高科技环境。在这些研究中,体内生物学研究用于指导体外仿生化学的发展。仿生学方法被解释为远远超出了视觉相似性或表面的二维涂层,而是根据组成、分级结构和纳米相空间性质的三维、长程图案化控制来看待。 为了实现这一目标,将研究复合材料组装的有机和无机协同控制、图案化无机组织的聚合物结构方向以及时空非平衡合成。在对生物材料的通常精细和高度长程有序组装的分子水平理解的背景下采取的上述方法将导致在明确限定的长度尺度上具有特定性质的技术上有用的材料的实际设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galen Stucky其他文献
Galen Stucky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galen Stucky', 18)}}的其他基金
MRI: Acquisition of X-ray Diffraction Instrumentation for Chemistry Research and Education
MRI:采购用于化学研究和教育的 X 射线衍射仪器
- 批准号:
1040541 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Chemical Methods to Control Charge Transfer at Nanoscale Interfaces
控制纳米级界面电荷转移的化学方法
- 批准号:
0805148 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
Molecular Design and 3-D Assembly for Coupled Electro-Optical Functionalities
耦合电光功能的分子设计和 3D 组装
- 批准号:
0233728 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Symposia Support: "Macromaterials: Angstroms to Microns", held in Conjunction with the American Chemical Society Annual Meeting in Orlando, FL, August 25 - 30, 1996
研讨会支持:“宏观材料:埃到微米”,与美国化学会年会同时举行,佛罗里达州奥兰多,1996 年 8 月 25 日至 30 日
- 批准号:
9612038 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Materials Design and Synthesis Using Molecular Kinetic and Biphase Control
使用分子动力学和双相控制的材料设计和合成
- 批准号:
9520971 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Acquisition of a Charged Coupled Device (CCD) High Intensity X-ray Diffraction System for Materials Synthesis
用于材料合成的电荷耦合器件 (CCD) 高强度 X 射线衍射系统的获取
- 批准号:
9512503 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Using the Host/Guest Relationship in the Synthesis and Design of Inorganic Nonlinear Optic Materials
利用主客体关系进行无机非线性光学材料的合成和设计
- 批准号:
9208511 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing grant
Biomineralization Processes on Natural and Synthetic Substrates
天然和合成基质上的生物矿化过程
- 批准号:
9202775 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Using the Host/Guest Relationship in the Synthesis and Design of Inorganic Non Linear Optic Materials
利用主客体关系进行无机非线性光学材料的合成和设计
- 批准号:
8821499 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing grant
Structure and Chemistry of Main Group and Early Transition Metal Organometallic Compounds
主族及早期过渡金属有机金属化合物的结构与化学
- 批准号:
7724964 - 财政年份:1978
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
- 批准号:
23H02064 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Organic electronics opened up by unique integration methods of functional molecular materials
功能分子材料独特集成方法开辟有机电子学
- 批准号:
23K04876 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A pilot study of the organic integration of philosophy and linguistics: A research model beyond philosophy of language
哲学与语言学有机融合的初探:超越语言哲学的研究模式
- 批准号:
22K18461 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SBIR Phase I: Organic Glass Scintillator Integration into 64-channel Pixelated Array
SBIR 第一阶段:有机玻璃闪烁体集成到 64 通道像素化阵列中
- 批准号:
2035921 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Photoheterotrophy for economical production of bioplastics from municipal organic waste: Integration of polyphosphate metabolism and P-recovery chemistry to maximize PHA yields
利用城市有机废物经济地生产生物塑料的光异养技术:整合多磷酸盐代谢和磷回收化学,以最大限度地提高 PHA 产量
- 批准号:
521545-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Strategic Projects - Group
Surface Functionalization and Materials Integration of Metal-organic Polyhedra
金属有机多面体的表面功能化与材料集成
- 批准号:
20K22554 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Organic negative differential resistance transistor for improving integration density
用于提高集成密度的有机负微分电阻晶体管
- 批准号:
19H00866 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Organic Theorization of PICT Anchored in Interdisciplinary Integration and Its Application in English Teaching Methodology
跨学科融合的PICT有机理论及其在英语教学中的应用
- 批准号:
19K00882 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Photoheterotrophy for economical production of bioplastics from municipal organic waste: Integration of polyphosphate metabolism and P-recovery chemistry to maximize PHA yields
利用城市有机废物经济地生产生物塑料的光异养技术:整合多磷酸盐代谢和磷回收化学,以最大限度地提高 PHA 产量
- 批准号:
521545-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Strategic Projects - Group
Design and characterization of optical filters and organic photovoltaics modules for integration with photobioreactors
用于与光生物反应器集成的光学滤波器和有机光伏模块的设计和表征
- 批准号:
517268-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships